Skip to main content Accessibility help
×
Home

Modeling Stresses in Polyimide Films

  • Michael T. Pottiger (a1) and John C. Coburn (a2)

Extract

The trend towards higher density and smaller feature sizes in today's devices, and the increasing costs associated with designing and manufacturing these devices, has placed a greater emphasis on obtaining an a priori understanding of how various materials will perform in a device. A number of manufacturers have turned to computer modeling, utilizing finite element analysis to aid in the design of new devices and reduce the costs associated with preparing prototypes. The use of computer modeling requires a constitutive equation relating the response of a material to an applied load. Polymer behavior is complex and writing an equation or a series of equations that describe the behavior of the polymer over the entire range of possible temperatures and deformations is nontrivial. Instead, series of equations that describe ideal material behavior are used in an attempt to describe the behavior of real materials over a narrow range of temperatures and deformations. For solids, the ideal material response that is generally used to describe real polymer behavior is linear elasticity.

Copyright

References

Hide All
1 Malvern, L. E., Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Englewood Cliffs, New Jersey, 1969).
2 Ward, I. M., Mechanical Properties of Solid Polymers. 2nd ed. (John Wiley & Sons, New York, 1983).
3 Bauer, C. L., Ph.D. thesis, University of Massachusetts at Amherst, 1988.
4 Coburn, J. C. and , M.T., Advances in Polyimide Science and Technology, edited by Feger, C., Khojasteh, M. M., and Htoo, M. S. ( Technomic, Lancaster, PA, 1993) pp. 360374.
5 Pottiger, M. T. and Coburn, J. C. in Polymers for Microelectronics, edited by Wilson, C. G. and Thompson, L. F. (Am. Chem. Soc. Symp.; Washington, D. C., 1992).
6 Bauer, C. L. and Farris, R. J., Poly. Eng. Sci., 29 (16), 1107 (1989).
7 Pottiger, M. T. and Coburn, J. C. in Materials Science of High Temperature Polymers for Microelectronics, edited by Grubb, D. T., Mita, I., and Yoon, D. Y. (Mat. Res. Soc. Proc. 227, Pittsburgh, PA, 1991) pp. 187194.
8 Pottiger, M. T., Coburn, J. C., Auman, B., and Krizan, T. D., U. S. Patent No. 5 166 292 (24 November 1992).
9 Russell, T. P., Gugger, H., and Swalen, J. D., J. Polym. Sci., Polym. Phys. Ed., 21, 1745 (1983).
10 Boese, D., Herminghaus, S., Yoon, D. Y., Swalen, J. D., and Rabolt, J. F. in Materials Science of High Temperature Polymers for Microelectronics, edited by Grubb, D. T., Mita, I., and Yoon, D. Y. (Mat. Res. Soc. Proc. 227, Pittsburgh, PA, 1991) pp. 379386.
11 Senturia, S. D., Noe, S. C., and Pan, J. Y. in Materials Science of High Temperature Polymers for Microelectronics, edited by Grubb, D. T., Mita, I., and Yoon, D. Y. (Mat. Res. Soc. Proc. 227, Pittsburgh, PA, 1991) pp. 167176.
12 Noe, S. C; Pan, J. Y.; Senturia, S. D. Advances in Polyimide Science and Technology. edited by Feger, C., Khojasteh, M. M., and Htoo, M. S. ( Technomic, Lancaster, PA, 1993) pp. 587600.
13 Lin, L.; Bidstrup, S. A. PMSE Proceedings; 66; American Chemical Society: Washington, D.C., 1992; p 265.
14 Jou, J.-H., Huang, P-T., Chen, H-C., ans Liao, C-N., POlymer, 33 (5), 967 (1992).
15 Tong, H. M., Hsuen, H. K. D., Saenger, K. L., and Su, G. W., Rev. Sci. Instr., 62 (2), 422 (1991).\
16 Tong, H. M., Saenger, K. L., and Su, G. W., Proceedings; 49th Annual Technical Conference, Montreal, Canada (Society of Plastics Engineers, 1991) p 1727.
17 Wu, T. Y. and Questad, D. L. in Electronic Packaging Materials Science VI. edited by Ho, P. S., Jackson, K. A., Li, C.-Y., and Lipscomb, G. F. (Mat. Res. Soc. Proc. 264, Pittsburgh, PA, 1992) pp. 143160.
18 Pottiger, M. T. and Coburn, J. C., J. Poly. Sci., Poly. Phys. (submitted for publication).
19 Ferry, J. D., Viscoelastic Properties of Polymers. 3rd ed. (John Wiley, New York, 1980).
20 Geldermans, P., Goldsmith, C., and Bedetti, F. in Polyimides: Synthesis. Characterization, and Applications. Vol. 2, edited by Mittal, K. L. (Plenum Press, New York, 1984) pp. 695711.
21 Sackinger, S. T. and Farris, R. J. in Polyimides: Materials. Chemistry and Characterization, edited by Feger, C., Khojasteh, M. M., and McGrath, J. E. (Elsevier Science, Amsterdam, 1989) pp. 585600.
22 Sackinger, S. T., Ph.D. thesis, University of Massachusetss at Amherst, 1990.
23 Ree, M., Swanson, S., and Volksen, W, Polymer Preprints, 32 (3), 308 (1991).
24 Ree, M., Nunes, T. L., Rex Chen, K.-J., and Czornyj, G. in Materials Science of High Temperature Polymers for Microelectronics, edited by Grubb, D. T., Mita, I., and Yoon, D. Y. (Mat. Res. Soc. Proc. 227, Pittsburgh, PA, 1991) pp. 211218.
25 Noe, S. C., Ph.D. thesis, Massachusetts Institute of Technology, 1992.

Modeling Stresses in Polyimide Films

  • Michael T. Pottiger (a1) and John C. Coburn (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed