Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-26T08:26:54.171Z Has data issue: false hasContentIssue false

Modeling of the Structure and Reliability of Near-Bamboo Interconnects

Published online by Cambridge University Press:  15 February 2011

C.V. Thompson
Affiliation:
Massachusetts Institute of Technology,Department of Materials Science and Engineering, Cambridge, MA.
Y.-C. Joo
Affiliation:
Massachusetts Institute of Technology,Department of Materials Science and Engineering, Cambridge, MA.
B.D. Knowlton
Affiliation:
Massachusetts Institute of Technology,Department of Materials Science and Engineering, Cambridge, MA.
Get access

Abstract

When interconnect feature sizes (e.g., widths) and grain sizes are comparable, their average electromigration-lifetime increases. However, reliability increase occurs for a population of lines only if microstructural weak links, such as polygranular clusters, become unlikely throughout the population. Lifetime statistics and grain structure statistics are linked in a way which must be understood in order to take advantage of lifetime improvements through line-width-dependent and line-length-dependent current density limits. An analytic model has been developed which allows calculation of the polygranular cluster length distribution as a function of line width, line length and current density, given continuous-film median grain sizes and grain size deviations. A simple analytic model for the effect of post-patterning anneals on polygranular cluster length distributions is also presented. These models are shown to be consistent with detailed computer simulations of grain structures and grain structure evolution in interconnects. Improved grain structure models will enable less-conservative integrated circuit design practice, allowing design of higher performance circuits.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wu, K.,Baerg, W., and Jupiter, P., Appl. Phys. Lett. 58, 1299 (1991).Google Scholar
2 Tracy, M.M., Davies, P.W., Fanger, E., and Gartman, P., In Microstructural Science for Thin Film Metallization in Electronic Applications, ed. by J. Sanchez, S.A. Smith, and N. DeLanerolle,TMS, Phoenix, p. 157 (1988).Google Scholar
3 Wong, C.C., Smith, H.I., and Thompson, C.V., Appl. Phys. Letts. 48, 335 (1986).Google Scholar
4 Aberman, R. and Koch, R., Thin Solid Films 129, 71 (1985).Google Scholar
5 Aberman, R., Vacuum 41, 1279 (1990).Google Scholar
6 Aberman, R., Thin Solid Films 186, 223 (1990).Google Scholar
7 Frost, H.J., Thompson, C.V., Walton, D.T., Acta Met. et Mat. 38, 1455 (1990).Google Scholar
8 Hayashi, Y., Frost, H.J., Thompson, C.V., and Walton, D.T., MRS Symp. Proc. 317, 431 (1994).Google Scholar
9 Joo, Y.-C., and Thompson, C.V., MRS Symp. Proc. 338, 319 (1994).Google Scholar
10 Kinsbron, E., Appl. Phys. Lett. 36, 968 (1980).Google Scholar
11 Cho, J. and Thompson, C.V., Appl. Phys. Letts. 54, 2577 (1989).Google Scholar
12 Walton, D.T., Frost, H.J., and Thompson, C.V., MRS Symp. Proc. 225, 219 (1991).Google Scholar
13 Walton, D.T., Frost, H.J., and Thompson, C.V., Appl. Phys. Lett. 61, 40 (1992).Google Scholar
14 Arzt, E. and Nix, W.D., Mater, J.. Res. 6, 731 (1991).Google Scholar
15 Dwyer, M.L., Fu, K.Y., and Varker, C.J., J. Appl. Phys. 73, 4874 (1993).Google Scholar
16 Attardo, M.J. and Rosenberg, R., Appl, J.. Phys. 41, 2381 (1970).Google Scholar
17 Cho, J., and Thompson, C.V., Elec, J.. Mats. 19, 1207 (1990).Google Scholar
18 Blech, I., Appl, J.. Phys. 47, 1203 (1976).Google Scholar
19 Blech, I. and Herring, C., Appl. Phys. Lett. 29, 131 (1976).Google Scholar
20 Korhonen, M.A., Borgesen, P., Tu, K., and Li, C.-Y., Appl, J.. Phys. 73, 3790 (1993).Google Scholar
21 Thompson, C.V. and Lloyd, J.R., MRS Bulletin 18, 19 (1993).Google Scholar
22 Walton, D.T., thesis, M. S., Thayer School of Engineering, Dartmouth College (1991).Google Scholar
23 Vaidya, S., Sheng, T.T., and Sinha, A.K., Appl. Phys. Lett. 36, 464 (1980).Google Scholar
24 Atakov, E.M., Ling, J., Maziarz, S., Shapella, A., Miner, B., England, C., Harris, W., and Dunnell, D., Proc. of the 33rd IEEE Int’l Reliability Physics Symposium, 342 (1995).Google Scholar
25 Joo, Y.-C. and Thompson, C.V., Appl, J.. Phys. 76, 7339 (1994).Google Scholar
26 Palmer, J.E.,Thompson, C.V., and Smith, H.I., Appl, J.. Phys. 62, 2492 (1987).Google Scholar
27 Atakov, E., Clement, J., and Miner, B., MRS Symp. Proc. 309, 133 (1993).Google Scholar
28 Atakov, E., Clement, J., and Miner, B., 32nd IEEE Int’l Reliability Phys. Symp., p.213 (1994).Google Scholar
29 Arzt, E., Kraft, O., and Moeckl, U., MRS Symp. Proc. 338 (1994).Google Scholar
30 Oates, A.S., Appl. Phys. Letts. 66, 1475 (1995).Google Scholar
31 Knowlton, B.K., Clement, J.J., and Frank, R.I., this proceedings.Google Scholar
32 Brown, D.D., Sanchez, J.E. Jr., Besser, P.R., Korhonen, M.A. and Li, C.-Y., this proceedings.Google Scholar
33 Borgesen, P., Korhonen, M.A., Brown, D.D., Li, C.-Y., Rathore, H.S., and Totta, P.A., American Institute of Physics Conference Proceeding 305, 231 (1993).Google Scholar
34 Turnbull, D., Trans AIME 191, 661 (1951).Google Scholar
35 Thompson, C.V., MRS Symp. Proc. 309, 383 (1993).Google Scholar