Skip to main content Accessibility help
×
Home

Modeling of the Formation of Boron Carbide Particles in an Aerosol Flow Reactor

  • Yun Xiong (a1), Sotiris E. Pratsinis (a1) and W. Weimer (a2)

Abstract

The formation of submicron crystals of boron carbide (B4C) by rapid carbothermal reduction of intimately mixed carbon-boron oxide precursor powders in an aerosol flow reactor at temperatures above the boiling point of boron oxide is investigated. The employed high heating rates (105 K/s) of the process force release of gaseous boron oxide and suboxides and rupture of the precursor particles resulting in formation of boron carbide molecular clusters that grow to macroscopic particles by coagulation. Consequently, the formation and growth of B4C particles is described by simultaneous interparticle collision and coalescence using a two-dimensional distribution model that traces the evolution of both size and shape characteristics of the particles through their volume and surface area. Here, in addition to the coagulation term, the governing population balance equation includes a coalescence contribution based on B4C sintering law. The predicted evolution of the two-dimensional particle size distribution leads to a direct characterization of morphology as well as the average size and polydispersity of the powders. Furthermore, model predictions of the volume and surface area of boron carbide particles can be directly compared with experimental data of B4C specific surface area and grain size.

Copyright

References

Hide All
1. Weimer, A. W., Moore, W. G., Roach, R. P., Haney, C. N. and Rafaniello, W., AIChE J. 37, 759(1991).
2. Lipp, A.. Tech. Rundschau, 28 (14), 33 (1965).
3. Weast, R. C., Astle, M. J. and Beyer, W. H., CRC Handbook of Chemistry and Physics, 6th ed. (CRC Press, Florida, 1986).
4. Lamoreaux, R. H., Hildenbrand, D. L. and Brewer, L., J. Phys. Chem. Ref. Data 16 (3), 419 (1987).
5. Weimer, A. W., Moore, W. G., Roach, R. P., Hitt, J. E., Dixit, R. S. and Pratsinis, S. E., to be submitted to the Journal of the American Ceramic Society (1991).
6. Celik, I., O'Brien, T. J. and Godbole, D. B., Chem. Eng. Sci. 45 (1), 65 (1990).
7. Koch, W. and Friedlander, S. K., J. Colloid Interf. Sci. 140 (2), 419 (1990).
8. Xiong, Y. and Pratsinis, S. E., to be submitted to the Journal of Aerosol Science (1991).
9. Fuchs, N. A., The Mechanics of Aerosols (Pergamon Press, New York, 1964).
10. Seinfeld, J. H., Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York, 1986), Table 10.1.
11. Greskovich, C. and Rosolowski, J. H., J. Am. Ceram. Soc. 59 (8), 336 (1976).
12. Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., Introduction to Ceramics (Wiley, New York, 1976).
13. van Rijswijk, W. and Shanefield, D. J., J. Am. Ceram. Soc. 73 (1), 148 (1990).
14. Livey, D. T. and Murray, P., J. Am. Ceram. Soc. 39 (11), 363 (1956).
15. Dean, J. A., Lange's Handbook of Chemistry, 13th ed. (McGraw-Hill, New York, 1985).
16. Gelbard, F., Tambour, Y. and Seinfeld, J. H., J. Colloid Interf. Sci. 76 (2), 541 (1980).
17. Xiong, Y. and Pratsinis, S. E., J. Aerosol Sci. 22 (5), 637 (1991).
18. IMSL, User's Manual (IMSL Math / Library, Vol. 2, Version 1.1, Houston, 1989).

Modeling of the Formation of Boron Carbide Particles in an Aerosol Flow Reactor

  • Yun Xiong (a1), Sotiris E. Pratsinis (a1) and W. Weimer (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed