Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T05:34:34.274Z Has data issue: false hasContentIssue false

Modeling of Substrate Bias Effect on the Compositional Variations in Sputter-Deposited TiB2+x Diffusion Barrier Thin Films

Published online by Cambridge University Press:  10 February 2011

M. Sinder
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
G. Sade
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
J. Pelleg
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
Get access

Abstract

Sputter-deposited titanium boride diffusion barrier layers have been found to be boron enriched when r.f substrate bias was applied. In the present experiments titanium boride was deposited by co-sputtering from Ti and B pure targets in Ar discharge and the voltage of r.f. self-bias was in the range of 100 – 250 V. Films deposited were found by Auger electron spectroscopy to be B enriched with increasing bias voltage at constant Ti and B sputtering rates. A model of the sputter-deposition conditions was developed to predict the composition and the thickness of the growing film. The model explains the experimental results indicating that B enrichment is mainly a result of differential resputtering of the components from the growing film by energetic Ar ions captured from the r.f discharge.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nelson, C.W., in 1969 Hybrid Microelectronics Symposium (International Society for Hybrid Microelectronics, Hicks Printing Co., Dallas, TX 1969).Google Scholar
2 Nicolet, M.-A., Thin Solid Films 52, 415 (1978).Google Scholar
3 Blom, H.-O., Larsson, T., Berg, S. and Ostling, M., J. Vac. Sci. Technol. A7(2) 162 (1989).Google Scholar
4 Shappirio, J. R., Finnegan, J. J., Lux, R. A., J. Vac. Sci. Technol. B4(6) 1409 (1986).Google Scholar
5 Choi, C. S., Ruggles, G. A., Shah, A. S., Xing, G. C., Osburn, C. M., and Hunn, J. D., J. Electrochem. Soc. 138(10) 3062 (1991).Google Scholar
6 Kaloyeros, A.E., Hoffman, M. P., Williams, W.S., Greene, A.E., and McMillan, J.A., Phys. Rev. B 38(11) 7333 (1988).Google Scholar
7 Pierson, H.O. and Mullendore, A.W., Thin Solid Films 72 511 (1980).Google Scholar
8 Williams, L. M., Appl. Phys. Lett. 46 43 (1985).Google Scholar
9 Otter, F.A., Amisola, G.B., Roman, W.C., and Hay, S.O., J. Vac. Sci. Technol. A 10(4) 2796 (1992).Google Scholar
10 Choi, C.S., Xing, G.C., Ruggles, G.A., and Osburn, C.M., J. Appl. Phys. 69 7853 (1991).Google Scholar
11 Choi, C.S., Ruggles, G.A., Osburn, C.M., and Xing, G.C., J. Electrochem. Soc. 138(10) 3053 (1991).Google Scholar
12 Feldman, C., Satkiewicz, F. G., and Jones, G., J. Less-Common Met. 79 221 (1981).Google Scholar
13 Feldman, C., Satkiewicz, F. G., and Blum, N. A., J. Less-Common Met. 82 183 (1981).Google Scholar
14 Larsson, T., Blom, H.-O., Berg, S., and Ostling, M., J.Vac. Sci. Technol. A 7(2) 162 (1989).Google Scholar
15 Blom, H.-O., Larsson, T., Berg, S., and Ostling, M., Thin Solid Films 172 133 (1989).Google Scholar
16 Pdmanabhan, K. R. and Sorensen, G., Thin Solid Films 81 13 (1981).Google Scholar
17 Chen, J., Barnard, J.A., Materials Science and Engineering A 191 233 (1995).Google Scholar
18 Ryan, J. G., Roberts, S., G. Slusser, J., and Adams, E. D., Thin Solid Films 153 329 (1987).Google Scholar
19 Shikama, T., Sakai, Y., Fukutomi, M., and Okada, M., Thin Solid Films 156 287 (1988).Google Scholar
20 Shikama, T., Sakai, Y., Fujitsuka, M., Yamauchi, Y., Shindo, H., and Okada, M., Thin Solid Films 164 95 (1988).Google Scholar
21 Matsubara, E., Waseda, Y., Takeda, S. and Taga, Y., Thin Solid Films, 186 L33 (1990).Google Scholar
22 Smith, F., Zold, F.T. and Class, W., Thin Solid Films, 96 291 (1982).Google Scholar
23 Smith, J.F., Solid State Technol., 27 135 (1984).Google Scholar
24 Skelly, D.W. and Gruenke, L.A., J. Vac. Sci. Technol., 4 457 (1986).Google Scholar
25 Shappirio, J.R., Finnegan, J.J., Lux, R.A., and Fox, D.C., Thin Solid Films, 119 23 (1984).Google Scholar
26 Marinov, M., Thin Solid Films, 46 267 (1977).Google Scholar
27 Mattox, D.M. and Kominiak, G.J., J.Vac.Sci.Technol., 9 528 (1972).Google Scholar
28 Maissel, L.I. and Schaible, P.M., J. Appl. Phys., 36 237 (1965).Google Scholar
29 Sundgren, J.-E., Johansson, B.-O., Hentzell, H.T.G., and Karlsson, S.-E., Thin Solid Films, 105 385 (1983).Google Scholar
30 Sade, G. and Pelleg, J., Applied Surface Science 91, 263 (1995).Google Scholar
31 Sade, G., Pelleg, J., (Mater. Res. Soc. Symp. Proc. 402, Pittsburgh, PA 1996) 131.Google Scholar
32 Davis, L.E., MacDonald, N.C., Palmberg, P.W., Riach, G.E., and Weber, R.E., Handbook of Auger Electron spectroscopy (Physical Electronics Industries, Eden Prairie, MN, 1976).Google Scholar
33 Sigmund, P., Phys. Rev. 184 383 (1969).Google Scholar
34 Sigmund, P., Phys. Rev. 187 768 (1969).Google Scholar