Skip to main content Accessibility help

Modeling of Silicon Deposition Yield at Low Temperature by ArF Excimer Laser Photolysis of Disilane

  • B. Fowler (a1), S. Lian (a1), S. Krishnan (a1), C. Li (a1), L. Jung (a1), D. Samara (a1), I. Manna (a1) and S. Banerjee (a1)...


Non-thermal Chemical Vapor Deposition (CVD) such as laser-enhanced photo-CVD of Si at low temperatures is important for Si-based heterostructures and doping superlattices. Growth kinetic models must be developed to allow these processes to be fully exploited. Intrinsic Si epitaxial layers were deposited at low substrate temperatures of 250-350ºC using the 193 nm output of an ArF excimer laser to directly dissociate Si2H6. The intrinsic film deposition rate can be described by a kinetic model that considers the gas phase reactions of the primary photolysis products and diffusion ofsilicon-bearing molecules to the growth surface. With the laser beam tangential to the substrate surface, growth rates as a function of beam-to-substrate distance have been characterized and indicate that very little gas phase reaction occurs for the dominant Si growth precursor. In order for intrinsic film deposition to result solely from Si2H6 photolysis products, a sticking coefficient ≥ 0.6 must be assigned to the dominant growth precursor in order to fit the observed yield of Si deposited in the films, indicating that the dominant growth precursor in 193 nm Si2H6 photolysis is perhaps H2SiSiH2.



Hide All
1. Dohler, G., IEEE J. Quant. Elect. OE–22 (9), 1682 (1986).
2. People, R., IEEE J. Quant. Elect., OE–22 (9), 1696 (1986).
3. Gell, M., Phys. Rev. B, 38, 7535 (1988).
4. Lian, S., Fowler, B., Bullock, D., and Banerjee, S., Appl. Phys. Lett., 58, 514 (1991).
5. Chu, J., Begemann, M., McKillop, J., and Jasinski, J., Chem. Phys. Lett. 155 (6), 576 (1989).
6. Lian, S., Fowler, B., Krishnan, S., Jung, L., and Banerjee, S., Mat. Sci. Eng. B10 (3), 181 (1991).
7. Meyerson, B., Himpsel, F., and Uram, K., Appl. Phys. Lett. 51 (10), 1034 (1990).
8. Anthony, B., Breaux, L., Hsu, T., Banerjee, S. and Tasch, A., J.Vac. Sci. Technol. B 1, 621 (1989).
9. Fowler, B., Lian, S., Krishnan, S., Jung, L. and Banerjee, S., Mat. Res. Soc. Symp. Proc., 224, 323 (1991).
10. Dietrich, T., Chiussi, S., Stafast, H., and Comes, F., Appl. Phys. A 48, 405 (1989).
11. Reid, R., Prausnitz, J., and Poling, B., The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, 1987), p. 581.
12. Matsui, Y., Yuuki, A., Morita, N., and Tachibana, K., Jap. J. Appl. Phys. 26, 1575 (1987).
13. Stafast, H., Appl. Phys. A 45, 93 (1988).
14. Loh, S. and Jasinski, J., J. Chem. Phys. 25 (7), 4914 (1991).
15. Matsuda, A., Nomoto, K., Takeuchi, Y., Suzuki, A., Yooki, A., and Perrin, J., Surf. Sci. 227, 50 (1990).
16. Jasinski, J. and Chu, J., J. Chem. Phys. 88 (3), 1678 (1988).
17. Becerra, R. and Walsh, R., J. Phys. Chem. 21 (22), 5765 (1987).
18. Eres, D., Geohegan, D., Lowndes, D., and Mashburn, D., Appl. Surf. Sci. 36, 70 (1989).
19. Dietrich, T., Chiussi, S., Marek, M., Roth, A., and Comes, F., J. Phys. Chem. 95, 9302 (1991).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed