Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T10:13:19.770Z Has data issue: false hasContentIssue false

Modeling of Boron Diffusion and Activation for Nonequilibrium Rapid Thermal Annealing Application

Published online by Cambridge University Press:  21 February 2011

H. Kinoshita
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer EngineeringThe University of Texas at Austin, Austin, TX 78712
T. H. Huang
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer EngineeringThe University of Texas at Austin, Austin, TX 78712
D. L. Kwong
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer EngineeringThe University of Texas at Austin, Austin, TX 78712
Get access

Abstract

The diffusion and activation of ion implanted boron and BF2 during rapid thermal annealing (RTA) was modeled by considering the reaction kinetics between point defects and boron. The diffusion model uses the Monte Carlo generated point defect profiles, an extended defect model and a surface amorphization model for high dose BF2 implantation. Excellent simulation results have been achieved by using a single set of diffusion and kinetic parameters to model the enhanced diffusion of boron during RTA for a wide range of B and BF2 implant doses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fair, R. B., Gardner, C. L., Johnson, M. J., Kenkel, S. W., Rose, D. J., Rose, J. E., and Subrahmanyan, R., IEEE Trans. CAD, 10, 643 (1991).Google Scholar
2. Kim, Y. M., Lo, G. Q., Kinoshita, H., and Kwong, D. L., J. Electrochem. Soc., 138, 1122 (1991).CrossRefGoogle Scholar
3. Mulvaney, B. J., Richardson, W. B. and Crandle, T. L., IEEE Trans. Computer-Aided Design, CAD- 8, 336 (1989).Google Scholar
4. Klein, K. M., Park, C., and Tasch, A. F., IEDM Tech. Dig., 745 (1990).Google Scholar
5. Ho, C. P., Plummer, J. D. and Dutton, R. W., IEEE Trans. on Elect. Dev., ED- 30, 1438 (1983).Google Scholar
6. Wu, I. W., and Chen, L. J., J. Appl. Phys., 58, 3032 (1985).Google Scholar
7. Weinzierl, S. R., Heddleson, J. M., Hillard, R. J., P. Rai-Choudhury, Mazur, R. G., Ozburn, C. M., and Potyraj, P., Solid State Technology, pp. 3138, Jan. 1993.Google Scholar
8. Baccus, B., Wada, T., Shigyo, N., Norishima, M., Nakajima, H., lnou, K., linuma, T., and Iwai, H., IEEE Trans. on Elect. Dev., 39, 648 (1992).Google Scholar
9. Solmi, S., Landi, E. and Baruffaldi, F., J Appl. Phvs., 68. 3250 (1990).CrossRefGoogle Scholar
10. Solmi, S., Cembali, F., Fabbri, R., Lotti, R., Servidori, M., Anderle, M and Canteri, R., Nucl. Instr. and Meth., B37/38, 394 (1989).Google Scholar
11. Sedgwick, T. O., Michel, A. E., Deline, V. R., Cohen, S. A. and Lasky, J. B., J. Appl. Phys., 63, 1452 (1988).Google Scholar