Skip to main content Accessibility help
×
Home

Modeling of a GaN Based Static Induction Transistor

  • Gabriela E. Bunea (a1), S.T. Dunham (a2) and T.D. Moustakas (a2)

Abstract

Static induction transistors (SITs) are short channel FET structures which are suitable for high power, high frequency and high temperature applications. GaN has particularly favorable properties for SIT operation. However, such a device has not yet been fabricated. In this paper we report simulation studies on GaN static induction transistors over a range of device structures and operating conditions. The transistor was modeled with coupled drift-diffusion and heat-flow equations. We found that the performance of the device depends sensitively on the thermal boundary conditions, as self-heating effects limit the maximum voltage swing.

Copyright

References

Hide All
[1] Shur, M.S., Khan, M.A., Mat. Res. Bull. 22 (2), 44 (1997).
[2] Khan, M.A., Chen, Q., Shur, M., Dermott, B., Higgins, J., Burm, J., Schaff, W., Eastman, L., Solid State Electron. 41, 1555 (1997).
[3] Siergiej, R.R., Clarke, R.C., IEDM-95, 353 (1995).
[4] Moore, K., Trew, R.J., MRS Bulletin, March, 50 (1997).
[5] Binari, S., The 2nd Int. Conf. On I1I-V Nitrides, Tokushima, Japan (1997).
[6] Trew, R.J., Shin, M., Gatto, W., Solid State Electron. 41, 1561 (1997).
[7] Wu, Y.F., Keller, B., Keller, S., Kapolnek, D., Kozodoy, P., Denbaars, S., Mishra, U., Solid State Electron. 41, 1569 (1997).
[8] Burm, J., Schaff, W., Martin, G., Eastman, L., Amano, H., Akasaki, I., Solid State Electron. 41, 247 (1997).
[9] Wu, Y.F., Keller, B., Keller, S., Fini, P., Pusl, J., Le, M., Nguyen, N., Nguyen, C., Widman, D., Keller, S., Denbaars, S., Mishra, U., Electron. Lett. 33, 1742 (1997).
[10] Khan, M.A., Chen, Q., Shur, M., Dermott, B., Higgins, J., Burm, J., Schaff, W., Eastman, L., IEEE Electron Device Lett. 17, 584 (1996).
[11] Wu, Y.F., Keller, B., Keller, S., Nguyen, N., IEEE Electron Device Lett. 18, 438 (1997).
[12] Atlas User's Manual (Device simulation software), Silvaco Inc., Version 1.5.0. (1997).
[13] Anderson, H., Physics Vade Mecum (AIP, 1981).
[14] Sichel, E.K., Pankove, J.I., J. Phys. Chem. Solids 38, 330 (1978).
[15] Dmitriev, A.V., Oruzheinikov, A.L., MRS Internet J. Nitride Semic. Res. 1, 46 (1996).
[16] Albrech, J.D., MRS Nitride Symp. Proc., 423 (1996).
[17] Shur, M., J. Electron. Mat. 25, 777 (1996).
[18] Bhapkar, U., Shur, M.S., J. Appl. Phys. 82 (4), 1649 (1997).
[19] Götz, W., Johnson, N.M., Chen, C., Liu, H., Kuo, C., Imler, W., Appl. Phys. Lett. 68 (22), 3144 (1996).
[20] Nakamura, S., Mukai, T., Senoh, M., Jpn. J. of Appl. Phys. 31, 2883 (1997).
[21] Weimann, N., Eastman, L., Doppalapudi, D., Ng, H., Moustakas, T.D., J. Appl. Phys. 83, 3656 (1998).
[22] Selberherr, S., Analysis and simulation of semiconductor devices (Wien-New York, 1984).
[23] Oguzman, I.H., Bellotti, E., Brennan, K., Kolnik, J., Wang, R., Ruden, P., J. Appl. Phys. 81 (12), 7827 (1997).
[24] Hahne, E., Grigull, U., Int. J. Heat Mass Transfer 18, 751 (1975).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed