Skip to main content Accessibility help
×
Home

Model Reaction Systems to Produce Monodisperse Colloids

  • Kangtaek Lee (a1) and Alon McCormick (a1)

Abstract

Monodispersely-sized spherical metal oxide particles have recently attracted growing attention for many industrial applications. In particulate coating applications, controlling the size and distribution of the starting colloid plays a crucial role in the final coating properties (1,2). In chromatography, both porous and nonporous monodispersely sized colloidal particles have been used as a column-packing material (3,4). Monodisperse particles can also be used as a startingn material in a ceramic processing to make ceramic materials with uniform properties for mechanical, refractory, and catalysis applications.

Even though various monodisperse metal oxide colloids are already widely used in industry, predicting and controlling the particle size distribution is frequently more dependent on experience and ingenuity rather than on modeling. There is nothing wrong with empiricism, but models can help to achieve process control, optimization, and flexibility. We have sought to assess what combination of processes in solution (both reactive and aggregative) need to be modeled, and in doing so we have found a number of very useful references that give insight into 1) the mechanism of the particle formation and growth, and 2) the effect of reaction parameters on the final size distribution by using both experimental and numerical techniques. Understanding these should allow us to intelligently design a new process in order to make particles with the desired size and distribution. In this short contribution we hope that it will be of service to provide a brief overview of some key work that may yield itself to modeling. This review is not intended to be comprehensive; instead, we have selected work that shows features that one hopes should be captured by meaningful models.

Copyright

References

Hide All
1. Hachfeld, E. A., Kim, Y. J., and Francis, L. F., Mater. Lett. 18, 141 (1993).
2. Kim, Y. J., and Francis, L. F., J. Am. Ceram. Soc. 76, 737 (1993).
3. Hanson, M., and Unger, K. K., LC GC-Magazine Separation Sci. 15, 170 (1997).
4. Hanson, M., and Unger, K. K., LC GC-Magazine Separation Sci. 15, 364 (1997).
5. Stöber, W., Fink, A., and Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).
6. Bogush, G. H., Tracy, M. A., and Zukoski, C. F., J. Non-Cryst. Solids 104, 95 (1988).
7. Bogush, G. H., and Zukoski, C. F., in “Ultrastructure Proc. Adv. Ceramics” (Mckenzie, J. D. and Ulrich, D. R., Eds.), p. 477. Wiley, 1988.
8. Byers, C. H., Harris, M. T., and Williams, D. F., Ind. Eng. Chem. Res. 26, 1916 (1987).
9. Tan, C. G., Bowen, B. D., and Epstein, N., J. Colloid Interface Sci. 118, 290 (1987).
10. Giesche, H., J. Eur. Ceram. Soc. 14, 189 (1994).
11. van Blaaderen, A., van Geest, J., and Vrij, A., J. Colloid Interface Sci. 154, 481 (1992).
12. Bogush, G. H., and Zukoski, C. F., J. Colloid Interface Sci. 142, 1 (1991).
13. Lee, K., Look, J.-L., Harris, M. T., and McCormick, A. V., J. Colloid Interface Sci. in press (1997).
14. Selle, M. H., Sjoblom, J., and Lindberg, R., Colloid Polym. Sci. 273, 951 (1995).
15. Giesche, H., J. Eur. Ceram. Soc. 14, 205 (1994).
16. Chen, S.-L., Dong, P., Yang, G.-H., and Yang, J.-J., J. Colloid Interface Sci. 180, 237 (1996).
17. Ogihara, T., Ilzuka, M., Yanagawa, T., Ogata, N., and Yoshida, K., J. Mater. Sci. 27, 55 (1992).
18. van Blaaderen, A., and Kentgens, A. P. M., J. Non-Cryst. Solids 149, 161 (1992).
19. Chang, C.-L., and Fogler, H. S., AIChE J. 42, 3153 (1996).
20. Arriagada, F. J., and Osseo-Asare, K., J. Colloid Interface Sci. 170, 8 (1995).
21. Espiard, P., Mark, J. E., and Guyot, A., Polym. Bull. 24, 173 (1990).
22. Osseo-Asare, K., and Arriagada, F. J., Colloids and Surfaces 50, 321 (1990).
23. Osseo-Asare, K., and Arriagada, F. J., Colloids and Surfaces 69, 105 (1992).
24. Yamaguchi, H., Ishikawa, T., and Kondo, S., Colloids and Surfaces 37, 71 (1989).
25. Yanagi, M., Asano, Y., Kandori, K., Kon-no, K., and Kitahara, A., in “Proc. 1986 Shikizai Technical Conf.” Eds.), p. 86. Osaka, 1986.
26. Lindberg, R., Sjöblom, J., and Sundholm, G., Colloids and Surfaces 99, 79 (1995).
27. Buining, P. A., Liz-Marzan, L. M., and Philipse, A. P., J. Colloid Interface Sci. 179, 318 (1996).
28. Nawrocki, J., Rigney, M. P., McCormick, A. V., and Carr, P. W., J. Chromatogr. A 657, 229 (1993).
29. Blumenthal, W. B., “The Chemical Behavior of Zirconium.D. Van Nostrand Company, Inc., 1958.
30. Baes, C. F., and Mesmer, R. E., “The Hydrolysis of Cations.John Wiley & Sons, 1976.
31. Aiken, B., Hsu, W. P., and Matijevic, E., J. Mater. Sci. 25, 1886 (1990).
32. Bartlett, J. R., Woolfrey, J. L., Percy, M., Spiccia, L., and West, B. O., J. Sol-Gel Sci. Tech. 2, 215 (1994).
33. Bleier, A., and Cannon, R. M., in “Better Ceramics Through Chemistry II” (Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 71. Material Research Society, Pittsburgh, 1986.
34. Dechamps, M., Djuricic, B., and Pickering, S., J. Am. Ceram. Soc. 78, 2873 (1995).
35. Dirksen, J. A., and Ring, T. A., J. Am. Ceram. Soc. 73, 131 (1990).
36. Fegley, B., White, P., and Bowen, H. K., Am. Ceram. Soc. Bull. 64, 1115 (1985).
37. Fryer, J. R., Hutchison, J. L., and Paterson, R., J. Colloid Interface Sci. 34, 238 (1970).
38. Harris, M. T., Byers, C. H., and Brunson, R. R., in “Better Ceramics Through Chemistry III” (Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 287. Material Research Society, Pittsburgh, 1988.
39. Harris, M. T., “Ultrafine Precursor Powders by Homogeneous Precipitation and Electrodispersion.” Ph.D. thesis, University of Tennessee, 1992.
40. Harris, M. T., Sisson, W. G., Scott, T. C., Basaran, O. A., and Byers, C. H., in “Better Ceramics Through Chemistry VI” (Cheetham, A. K., Brinker, C. J., Mecartney, M. L. and Sanchez, C., Eds.), p. 171. Material Research Society, Pittsburgh, 1994.
41. Kumazawa, H., Hori, Y., and , E. S., Chem. Eng. J. 51, 129 (1993).
42. Kumazawa, H., Inoue, T., and Sada, E., Chem. Eng. J. 55, 93 (1994).
43. Lerot, L., Legrand, F., and De Bruycker, P., J. Mater. Sci. 26, 2353 (1991).
44. Matsui, K., Suzuki, H., and Ohgai, M., J. Am. Ceram. Soc. 78, 146 (1995).
45. Mazdiyasni, K. S., in “Better Ceramics Through Chemistry” (Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 175. Material Research Society, 1984.
46. Ogihara, T., Mizutani, N., and Kato, M., J. Am. Ceram. Soc. 72, 421 (1989).
47. Rijnten, H. T., “Formation, Preparation and Properties of Hydrous Zirconia.Academic Press, 1970.
48. Bradley, D. C., Mehrotra, R., and Gaur, D. P., “Metal alkoxides.Academic Press, 1978.
49. Sanchez, C., and Livage, J., New J. Chem. 14, 513 (1990).
50. Livage, J., Henry, M., and Sanchez, C., Prog. Solid St. Chem. 18, 259 (1988).
51. Livage, J., and Sanchez, C., J. Non-Cryst. Solids 145, 11 (1992).
52. Henry, M., Jolivet, J. P., and Livage, J., Structure and Bonding 77, 153 (1992).
53. Moon, Y. T., Park, H. K., Kim, D. K., and , C.H., , K., J. Am. Ceram. Soc. 78, 2690 (1995).
54. Barringer, E. A., and Bowen, H. K., J. Am. Ceram. Soc. 65, C199 (1982).
55. Barringer, E. A., and Bowen, H. K., Langmuir 1, 420 (1985).
56. Barringer, E. A., and Bowen, H. K., Langmuir 1, 414 (1985).
57. Jean, J. H., and Ring, T. A., Am. Ceram. Soc. Bull. 65, 1574 (1986).
58. Jean, J. H., and Ring, T. A., Langmuir 2, 251 (1986).
59. Hartel, R. W., and Berglund, K. A., in “Better Ceramics Through Chemistry II” (Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 633. Material Research Society, Pittsburgh, 1986.
60. Edelson, L. H., and Glaeser, A. M., J. Am. Ceram. Soc. 71, 225 (1988).
61. Bailey, J. K., and Mecartney, M. L., in “Better Ceramics Through Chemistry IV” (B. Zelinski, J. J., Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 153. Material Research Society, Pittsburgh, 1990.
62. Look, J.-L., Bogush, G. H., and Zukoski, C. F., Faraday Discuss. Chem. Soc. 90, 345 (1990).
63. Harris, M. T., and Byers, C. H., J. Non-Cryst. Solids 103, 49 (1988).
64. Kallala, M., Sanchez, C., and Cabane, B., Phys. Rev. E. 48, 3692 (1993).
65. Kallala, M., Sanchez, C., and Cabane, B., J. Con-Cryst. Solids 147&148, 189 (1992).
66. Matijevic, E., Budnik, M., and Meites, L., J. Colloid Interface Sci. 61, 302 (1977).
67. Kato, A., Takeshita, Y., and Katatae, Y., in “Processing Science of Advanced Ceramics” (Aksay, I. A., McVay, G. L. and Ulrich, D. R., Eds.), p. 13. Material Research Society, Pittsburgh, 1989.
68. Berglund, K. A., Tallant, D. R., and Dosch, R. G., in “Science of Ceramic Chemical Processing” (Hench, L. L. and Ulrich, D. R., Eds.), p. 94. John Wiley & Sons, Inc., 1986.
69. Harris, M. T., Basaran, O. A., and Byers, C. H., in “Better Ceramics Through Chemistry V” Eds.), p. 291. Material Research Society, 1992.
70. Willard, H. H., and Tang, N. K., J. Am. Ceram. Soc. 59, 1190 (1937).
71. Ayral, A., Phalippou, J., and Droguet, J. C., in “Better Ceramics Through Chemistry III” (Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 239. Material Research Society, Pittsburgh, 1988.
72. Blendell, J. E., Bowen, H. K., and Coble, R. L., Ceram. Bull. 63, 797 (1984).
73. Brace, R., and Matijevic, E., J. Inorg. Nucl. Chem. 35, 3691 (1973).
74. Bradley, S. M., and Hanna, J. V., J. Am. Ceram. Soc. 116, 7771 (1994).
75. Catone, D. L., and Matijevic, E., J. Colloid Interface Sci. 48, 291 (1974).
76. Fanelli, A. J., and Burlew, J. V., J. Am. Ceram. Soc. 69, C174 (1986).
77. Gu, Y., Zhao, S., Hu, L., and Chen, M., Huagong Yejin/Eng. Chem. & Metallurgy 14, 14 (1993).
78. Harris, M. T., Byers, C. H., and Brunson, R. R., in “Processing Science of Advanced Ceramics” (Aksay, I. A., McVay, G. L. and Ulrich, D. R., Eds.), p. 23. Material Research Society, Pittsburgh, 1989.
79. Her, Y.-S., Lee, S.-H., and Matijevic, E., J. Mater. Res. 11, 156 (1996).
80. Ilievski, D., and White, E. T., Chem. Eng. Sec. 49, 3227 (1994).
81. Lee, S.-K., Shinozake, K., and Mizutani, N., J. Ceram. Soc. Jpn. 100, 1140 (1992).
82. Rezgui, S., Gates, B. C., Burkett, S. L., and Davis, M. E., Chem. Mater. 6, 2390 (1994).
83. Simon, C., Bredesen, R., Grondal, H., Hustoft, A. G., and Tangstad, E., J. Mater. Sci. 30, 5554 (1995).
84. Singh, V. K., and Sinha, R. K., Mater. Lett. 18, 201 (1994).
85. Singhal, A., and Keefer, K. D., J. Mater. Res. 9, 1973 (1994).
86. Song, K. C., and Chung, I. J., J. Non-Cryst. Solids 108, 37 (1989).
87. Veesler, S., and Boistelle, R., J. Cryst. Growth 142, 177 (1994).
88. Yoldas, B. E., J. Appl. Chem. Biotechnol. 23, 803 (1973).
89. Yoldas, B. E., Ceram. Bull. 54, 289 (1974).
90. Yoldas, B. E., and Partlow, D. P., J. Mater. Sci. 23, 1895 (1988).
91. Ansorge, F., and Russel, C., J. Mater. Sci. 28, 40 (1993).
92. Fegley, B., and Barringer, E. A., in “Better Ceramics Through Chemistry” (Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds.), p. 187. Material Research Society, Pittsburgh, 1984.
93. Heistand, R. H., Oguri, Y., Okamura, H., Moffatt, W. C., Novich, B., Barringer, E. A., and Bowen, H. K., in “Science of ceramic chemical processing” (Henry, L. L. and Ulrich, D. R., Eds.), p. 482. John Wiley & Sons, Inc., New York, 1986.
94. Ingebrethsen, B. J., Matijevic, E., and Partch, R. E., J. Colloid Interface Sci. 95, 228 (1983).
95. Okamura, H., Barringer, E. A., and Bowen, H. K., J. Am. Ceram. Soc. 69, C22 (1986).
96. Okamura, H., Barringer, E. A., and Bowen, H. K., J. Mater. Sci. 24, 1867 (1989).
97. Ramakrishnan, K. N., Venkadesan, S., and Nagarajan, R., Scripta Materialia 34, 151 (1996).
98. Tartaj, P., Serna, C. J., and Ocana, M., J. Am. Ceram. Soc. 78, 1147 (1995).
99. Lee, K., Pozarnsky, G. A., Zarembowitch, O., and McCormick, A. V., Chem. Eng. J. 64, 215 (1996).
100. Hung, C.-H., and Katz, J. L., J. Mater. Res. 7, 1861 (1992).
101. Hung, C.-H., Miquel, P. F., and Katz, J. L., J. Mater. Res. 7, 1870 (1992).
102. Miquel, P. F., Hung, C.-H., and Katz, J. L., J. Mater. Res. 8, 2404 (1993).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed