Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-26T23:08:23.788Z Has data issue: false hasContentIssue false

A Model for the Yield Strength Anomaly in FeAl

Published online by Cambridge University Press:  15 February 2011

I. Baker
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
E. P. George
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
Get access

Abstract

A phenomenological model is used to explain the yield strength anomaly in FeAl. The model incorporates hardening by thermal vacancies at intermediate temperatures, and dislocation creep at elevated temperatures. Since the vacancy concentration increases exponentially with increasing temperature, the model predicts an exponential increase in strength with increasing temperature. This increasing strength is terminated by the onset of dislocation creep. The model captures the experimentally-observed strain rate dependency of the yield stress at high temperatures, and yields an activation enthalpy for vacancy formation which is in excellent agreement with a previously measured value [1].

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Würschum, R., Grupp, C., and Schaefer, H.E., Physics Review Letters, 75, 97 (1995).Google Scholar
2. Chang, K. M., Metall. Trans., 21A, 3027 (1990).Google Scholar
3. Xiao, H. and Baker, I., Scripta Metall. Mater., 28, 1411 (1993).Google Scholar
4. Yoshimi, K. et al., Proc. 3rd Japan Int. SAMPE Symposium (1993) p. 1404.Google Scholar
5. Yoshimi, K. and Hanada, S., in Structural Intermetallics, eds. Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B. and Nathal, M.V., (TMS Warrendale, 1993) p. 475.Google Scholar
6. Guo, J. T., Jin, O., Yin, W.M. and Wang, T.M., Scripta Metall. Mater., 29, 783 (1993).Google Scholar
7. Klein, O. and Baker, I., Scripta Metall. Mater., 30, 1413 (1994).Google Scholar
8. Yoshimi, K., Hanada, S., and Tokuno, H., Metall. Trans. JIM, 35, 51 (1994).Google Scholar
9. Baker, I. et al., Acta Metall. Mater., 43, 1723 (1995).Google Scholar
10. Carlton, R.L., George, E.P., and Zee, R.H., Intermetallics, 3, 433 (1995).Google Scholar
11. Yoshimi, K., Matsumoto, N., Hanada, S., and Yoo, M.H., Acta Metall. Mater., 43, 4141 (1995).Google Scholar
12. Yoshimi, K., Hanada, S., and Yoo, M.H., Intermetallics, 4, 159 (1996).Google Scholar
13. Baker, I., and Gaydosh, D.J., Mater. Sei. Eng., 96, 147 (1987).Google Scholar
14. Umakoshi, Y., Yamaguchi, M., Namba, Y., and Murakami, M., Acta Metall., 24, 89 (1976).Google Scholar
15. Yoo, M.H., in High Temperature Ordered Intermetallic Alloys II, ed. Stoloff, N.S., Koch, C.C., Liu, C.T. and Izumi, O., (Proc. Mater. Res. Soc., Pittsburgh, Pa, 1987) vol. 81, p. 207.Google Scholar
16. Fu, C.L. and Yoo, M.H., Acta Metall. Mater., 40, 703 (1992).Google Scholar
17. Yoo, M.H., Horton, J.A., and Liu, C.T., Acta metall., 36, 2935 (1988).Google Scholar
18. Umakoshi, Y., and Yamaguchi, M., Phil. Mag., 41A, 573 (1980).Google Scholar
19. Mendiratta, M.G., Kim, H., and Lipsitt, H.A., Metall. Trans., 15A, 395 (1984).Google Scholar
20. Munroe, P.R. and Baker, I., Phil. Mag., 72, 1301 (1995).Google Scholar
21. Morris, D.G., Phil. Mag., 71, 1281 (1995).Google Scholar
22. Yamaguchi, M., and Umakoshi, Y., Progress Materials Science, 34, 1 (1990).Google Scholar
23. Saka, H., Phil. Mag., 49A, 327 (1984).Google Scholar
24. Saka, H. and Kawase, M., Phil. Mag., 49A, 525 (1984).Google Scholar
25. Saka, H., Kawase, M., Nohara, A., and Imura, T., Phil. Mag., 51A, 629 (1985).Google Scholar
26. Saka, H., Zhu, Y.M., Kawase, M., Nohara, A., and Imura, T., Phil. Mag., 51A, 365 (1985).Google Scholar
27. Zhu, Y.M. and Saka, H., Phil. Mag., 59A, 661 (1989).Google Scholar
28. George, E.P., Carleton, R.L., Cohron, J., and Zee, R.H., to be published.Google Scholar
29. George, E.P. and Baker, I., Submitted to Phil. Mag.Google Scholar
30. Chang, Y.A., Pike, L.M., Liu, C.T., Bilbrey, A.R., and Stone, D.S., Intermetall., 1, 107, (1993).Google Scholar
31. Nagpal, P. and Baker, I., Metall. Trans., 21A, 2281 (1990).Google Scholar
32. Chou, C.T. and Hirsch, P.B., Phil. Mag. A, 44, 1415 (1981).Google Scholar
33. Chou, C.T. and Hirsch, P.B., Institute of Physics Conference Series, 61, 459 (1982).Google Scholar
34. Chou, C.T. and Hirsch, P.B., Proc. Roy. Soc., A387, 91 (1983).Google Scholar
35. Sainfort, G. et al., Mem. Sci. Rev. Met., 60, 125 (1963).Google Scholar
36. Morgund, P., Moururat, P., and Sainfort, G., Acta Metallurgica, 16, 867 (1968).Google Scholar
37. Gaydosh, D.J., Draper, S.L., and Nathal, M.V., Metall. Trans., 20A, 1701 (1989).Google Scholar
38. Mendiratta, M.G. et al., Proc. 3rd Int. Conference on Rapid Solidification Processing: Materials and Technologies, ed. Mehrabian, R., (1993) p. 240.Google Scholar
39. Li, X. and Baker, I., submitted to Scripta Metall. Mater.Google Scholar
40. Ashby, M.F. and Frost, H.J. in Constitutive Equations in Plasticity (1975) p117.Google Scholar
41. Harmouche, M.R. and Wolfenden, A., Mater. Sei. Eng., 84, 35 (1986).Google Scholar
42. Xiao, H. and Baker, I., Acta Metall. Mater., 43, 391 (1995).Google Scholar
43. Klein, O. and Baker, I., Scripta Metall. Mater., 30, 627 (1994).Google Scholar
44. Takasugi, T. and Izumi, O., J. Mater. Sci., 23, 1265 (1988).Google Scholar
45. Nakamura, M. and Saka, Y., J. Mater. Sci., 23, 4041 (1988).Google Scholar
46. Takasugi, T., Yoshida, M., and Hanada, S., J. Mater. Sci., 26, 2941 (1991).Google Scholar