Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T10:08:34.157Z Has data issue: false hasContentIssue false

Model for Spin Injection into Conjugated Organic Semiconductors

Published online by Cambridge University Press:  15 March 2011

P. Paul Ruden
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
Darryl L. Smith
Affiliation:
Los Alamos National Laboratory Los Alamos, NM 87545, USA
Get access

Abstract

We present a theoretical model to describe electrical spin injection from a ferromagnetic metal contact into a conjugated organic semiconductor. To achieve significant spin current, the organic semiconductor must be driven far out of local thermal equilibrium by an electric current. Effective spin injection therefore requires that equilibration between the conjugated organic semiconductor and the metallic contact be suppressed by an energy barrier to injection that may be due either to a large Schottky barrier or to an insulating tunnel barrier. The results are compared with simulations for a silicon based device structure. Detection of the injected spin current in the organic semiconductor is also addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 See for example: “Semiconductor Spintronics and Quantum Computation”, Awschalom, D.S., Loss, D., and Samarth, N., eds., Springer, Berlin (2003), and References therein.Google Scholar
2 Isakovic, A., Carr, D.M., Strand, J., Schultz, B.D., Palmstrom, C.J., and Crowell, P.A., Phys. Rev. B 64, 016601 (2001).Google Scholar
3 Zhu, J.H., Ramsteiner, M., Kostial, H., Wassermeier, M., Schonherr, H.-P., Ploog, K.H., Phys. Rev. Lett., 87, 016601 (2001).Google Scholar
4 Hanbicki, A.T., Jonker, B.T., Itskos, G., Kioseoglou, G., andPetrou, A., Appl. Phys. Lett., 80, 1240 (2002).Google Scholar
5 Dediu, V., Murgia, M., Matacotta, F.C., Taliani, C., Barbanera, S., Solid State Commun., 122, 181 (2002).Google Scholar
6 Xiong, Z.H., Wu, D., Vardeny, Z. Valy, and Shi, J., Nature 427, 821 (2004).Google Scholar
7 Campbell, I.H. and Smith, D.L., in Solid State Physics Vol. 55, edited by Ehrenreich, H. and Spaepen, F., (Academic, New York, 2001).Google Scholar
8 Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., Wees, B.J. van, Phys. Rev. B, 62, R4790 (2000).Google Scholar
9 Rashba, E.I., Phys. Rev. B, 62, R16276 (2000).Google Scholar
10 Smith, D.L. and Silver, R.N., Phys. Rev. B 64, 045323 (2001).Google Scholar
11 Albrecht, J.D. and Smith, D.L., Phys. Rev. B66, 113303 (2002).Google Scholar
12 Campbell, I.H., Kress, J.D., Martin, R.L., Smith, D.L., Barashkov, N.N., and Ferraris, J.P., Appl. Phys. Lett., 71, 3528 (1997).Google Scholar
13 Davids, P.S., Campbell, I.H., and Smith, D.L., J. Appl. Phys. 82, 6319 (1997).Google Scholar
14 Ruden, P.P. and Smith, D.L., J. Appl. Phys. 95, 4898 (2004).Google Scholar