Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T23:02:31.719Z Has data issue: false hasContentIssue false

A Model for Irradiation-Induced Amorphization

Published online by Cambridge University Press:  10 February 2011

S. X. Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109
L. M. Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109
R. C. Ewing
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109
Get access

Abstract

A model based on cascade melting and recrystallization is derived to describe ion irradiation-induced amorphization. The accumulation of amorphous volume fraction during irradiation is represented in a single equation. Depending on the extent of recrystallization of a subcascade, the amorphous volume accumulation can be described by a set of curves that change from exponential to sigmoidal functions. The parameters (including temperature, cascade size, crystallization rate, glass transition temperature, dose rate) that affect the extent of recrystallization are included in the model. The model also describes the temperature dependence of critical dose for amorphization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gibbons, J. G., Proc. IEEE 60 (1972) 1062.Google Scholar
[2] Morehead, F. F. Jr. and Crowder, B. L., Radiat. Eff. 6 (1970) 27.Google Scholar
[3] Titov, A. I. and Carter, G., Nucl. Instrum. Meth. B 119 (1996) 491.Google Scholar
[4] Ziemann, P., Miehle, W. and Plewnia, A., Nucl. Instrum. Meth. B 80/81 (1993) 370.Google Scholar
[5] Naguib, H. M. and Kelly, R., Radiat. Eff. 25 (1975) 1.Google Scholar
[6] Ziemann, P., Mater. Sci. Eng. 69 (1985) 95.Google Scholar
[7] Wang, S. X., Ph. D. Thesis (The University of New Mexico, 1997).Google Scholar
[8] Wang, S. X., Wang, L. M. and Ewing, R. C., Mat. Res. Soc. Symp. Proc. 439, 619 (1997) 619.Google Scholar
[9] Dennis, J. R. and Hale, E. B., J. Appl. Phys. 49 (1978) 1119.Google Scholar
[10] Motta, A. T., Howe, L. M., and Okamoto, P. R., J. Nucl. Mater. 205 (1993) 258.Google Scholar
[II] Thompson, D. A., Golanski, A., Haugen, K. H., Stevanovic, D. V., Carter, G. and Christodoulides, C. E., Radiat. Eff. 52 (1980) 69.Google Scholar
[12] Carter, G., Katardjiev, I. V. and Nobes, M. J., Radiat. Eff. 105 (1988) 211.Google Scholar
[13] Benyagoub, A. and Thomé, L., Phys. Rev. B 38 (1988) 10205.Google Scholar
[14] Carter, G., J. Appl. Phys. 79 (1996) 8285.Google Scholar
[15] Motta, A. T. and Olander, D. R., Acta Metall. Mater. 38 (1990) 2175.Google Scholar
[16] Weber, W. J., Ewing, R. C. and Wang, L. M., J. Mater. Res. 9 (1994) 688.Google Scholar
[17] Drigo, A. V., Berti, M., Benyagoub, A., Bernas, H., Pivin, J. C., Pons, F., L. Thomé and C. Cohen, Nucl. Instrum. Meth. B19/20 (1987) 533.Google Scholar
[18] Jaouen, C., Riviere, J. P., and Delafond, J., Thomé, L., Pons, F., Danielou, R., Fontenille, J. and Ligeon, E., J. Appl. Phys. 65 (1989) 1499.Google Scholar