Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T16:01:49.448Z Has data issue: false hasContentIssue false

A Model for Interdiffusion at Metal Semiconductor Interfaces: Conditions for Spiking

Published online by Cambridge University Press:  25 February 2011

Olof C. Hellman
Affiliation:
Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139
Nicole Herbots
Affiliation:
Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139
David C. Eng
Affiliation:
Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139
Get access

Abstract

We have derived a dynamical model for interdiffusion at aluminum-silicon interfaces which can explain the great variety of rates of interdiffusion observed for this system. The variables addressed by the model include the degree of covalent bonding which occurs at the chemical interface and the local atomic structure of that interface. Local solid solubility data and maximum rates of dissolution are derived analytically, and good agreement is observed between the model and both thermodynamic data for the bulk aluminum-silicon system and kinetic data for reaction rates at differently prepared interfaces. The influence of dopants and structural defects on the predictions of the model is in accord with experimental observations. The model points to some critical conditions for the preparation of thermally stable aluminum-silicon interfaces, which are potentially applicable to other metal-semiconductor systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pramanik, D. and Saxena, A.N., Solid State Technology, Jan. 1983, 127.Google Scholar
2. Nakamura, K., Nicolet, M.A., Mayer, J.W., Blattner, R.J. and Evans, C.A. Jr, J. Appl. Phys., 46(11), Nov. 1975.Google Scholar
3. Naguib, H.M. and Hobbs, L.H., J. Electrochem. Soc., 125(1), Jan. 1978.CrossRefGoogle Scholar
4. Learn, A.J. and Nowicki, R.S., Appl. Phys. Lett., 35(8) p. 611, 15 Oct. 1979.Google Scholar
5. Herbots, N., Ph.D. Thesis, Université Catholique de Louvain, 1984.Google Scholar
6. Herbots, N., Wiele, F. Van De, Lobet, M. and Elliman, R.G., J.Electrochem Soc., 131 (3), p.645 (1984).Google Scholar
7. Herbots, N., Eng, D.C. and Hellman, O.C., Materials Research Society Fall Meeting Extended Abstracts, Symposium Y: Selected Topics in Electronic Materials, Eds. Appleton, B.R. et al., (1988).Google Scholar
8. Ignat'ev, A.S., Mokerov, V.G., Petrova, A.G., Rybin, A.V. and Manzha, N.M., Sov. Tech. Phys. Lett., 8 (4), 174, April 1982.Google Scholar
9. Yamada, I., Inokawa, H., and Takagi, T., J. Appl. Phys., 56(10) 15 Nov. 1984.CrossRefGoogle Scholar
10. Kobayashi, T., Sekiguchi, A., Hosokawa, N. and Asamaki, T., Jpn. J.Appl. Phys. 27 L1775 (1988).CrossRefGoogle Scholar
11. Gösele, U., in Semiconductor Silicon 1986, Huff, H.R., Abe, T. and Kolbesen, B., Eds. (Pennington:The Electrochemical Society), p. 541.Google Scholar
12. Hiraki, A., in Proceedings of the Svmposium on Thin Film Interfaces and Reactions, Baglin, J.E.E. and Poate, J.M., Eds. (Princeton: The Electrochemical Society), 1980, p. 122.Google Scholar
13. Tersoff, J., Phys. Rev. Lett, 52(6) p. 465, 6 Feb. 1984.Google Scholar
14. Brillson, L.J., Slade, M.L., Katnani, A.D., Kelly, M. and Margaritondo, G., Appl. Phys. Lett. 44 (1), 1 Jan. 1984.CrossRefGoogle Scholar
15. Freedman, J.F. and Nowick, A.S., Acta Met., 6 p.176, 15 Nov. 1984.Google Scholar
16. Lundy, T.S. and Murdoch, J.F., J. Appl. Phys., 33(5) May 1962.CrossRefGoogle Scholar
17. Baste-field, J., Shannon, J.M. and Gill, A., Sol. St. Electronics, 18, p. 290 (1975).CrossRefGoogle Scholar
18. Gurp, G.J. van, J. Appl. Phys., 44(5) May 1973.Google Scholar
19. McCaldin, J.O. and Sankur, H., Appl. Phys. Lett. 19(12), 15 Dec. 1971.CrossRefGoogle Scholar
20. Weizer, V.G. and Fatemi, N.S., J. Electron. Mater., 18(1) Jan. 1989.Google Scholar