Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-23T00:57:58.287Z Has data issue: false hasContentIssue false

A Model Calculation for the Vibrational Modes in C60

Published online by Cambridge University Press:  25 February 2011

R.A. Jishi
Affiliation:
Department of Physics, California State University at Los Angeles, Los Angeles, CA 90032
R.M. Mirje
Affiliation:
Department of Mathematics, University of Massachusetts at Lowell, Lowell, MA 01854
M.S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science and Department of Physics, MIT, Cambridge MA 02139
Get access

Abstract

A force constant model for the vibrational modes in C60, based on bond-stretching and anglebending interactions, is presented. The results of this model are compared with the experimental data available from Raman, infrared, and high resolution electron energy loss spectroscopies, as well as neutron inelastic scattering measurements. Excellent agreement is obtained between the calculated and experimental mode frequencies. The pressure dependence of the Ramanand infrared-active mode frequencies is calculated within a simple model and is compared to available experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Zhou, Ping, Wang, Kai-An, Wang, Ying, Eklund, P. C., Dresselhaus, M. S., Dresselhaus, G., and Jishi, R. A., Phys. Rev. B45 (1992). July 15.Google Scholar
[2] Ping Zhou, Wang, K. A., Rao, A. M., Eklund, P. C., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B45, 10838 (1992).Google Scholar
[3] Bethune, D. S., Meijer, G., Tang, W. C., Rosen, H. J., Golden, W. G., Seki, H., Brown, C. A., and Derries, M. S., Chem. Phys. Lett. 179, 181 (1991).Google Scholar
[4] Kritschmer, W., Fostiropoulos, K., and Huffman, D. R., Chem. Phys. Lett. 170, 167 (1990).Google Scholar
[5] Bethune, D. S., Meijer, G., Tang, W. C., and Rosen, H. J., Chem. Phys. Lett. 174, 219 (1990).Google Scholar
[6] Gensterblum, G., Pireaux, J. J., Thiry, P. A., Caudono, R., Vigneron, J. P., Lambin, Ph., Lucas, A. A., and Krhtschmer, W., Phys. Rev. Lett. 67, 2171 (1991).Google Scholar
[7] Cappelletti, R. L., Copley, J. R. D., Kamitakahara, W., Li, Fang, Lannin, J. S., and Ramage, D., Phys. Rev. Lett. 66, 3261 (1991).Google Scholar
[8] Prassides, K., Dennis, T. J. S., Hare, J. P., Tomkinson, J., Kroto, H. W., Taylor, R., and Walton, D. R. M., Chem. Phys. Lett. 187, 455 (1991).CrossRefGoogle Scholar
[9] Tolbert, S. H., Alivisatos, A. P., Lorenzana, H. E., Kruger, M. B., and Jeanloz, R., Chem. Phys. Lett. 188, 163 (1992).CrossRefGoogle Scholar
[10] Snoke, D. W., Raptis, Y. S., and Syassen, K., (1992). private communication.Google Scholar
[11] Klug, D. D., Howard, J. A., and Wilkinson, D. A., Chem. Phys. Lett. 188, 168 (1992).Google Scholar
[12] Stanton, R. E. and Newton, M. D., J. Phys. Chem. 92, 2141 (1988).Google Scholar
[13] Negri, F., Orlandi, G., and Zerbetto, F., Chem. Phys. Lett. 144, 31 (1988).Google Scholar
[14] Disch, R. L. and Schulmann, J. M., Chem. Phys. Lett. 125, 465 (1986).Google Scholar
[15] Häser, M., Almlöf, J., and Scuseria, G. E., Chem. Phys. Lett. 181, 497 (1991).CrossRefGoogle Scholar
[16] Adams, G. B., Page, J. B., Sankey, O. F., Sinha, K., Menendez, J., and Huffman, D. R., Phys. Rev. B44, 4052 (1991).CrossRefGoogle Scholar
[17] Feuston, B. P., Andreoni, W., Parrinello, M., and Clementi, E., Phys. Rev. B44, 4056 (1991).Google Scholar
[18] Warshel, A. and Karplus, M., J. Am. Chem. Soc. 94, 5612 (1972).Google Scholar
[19] Weeks, D. E. and Harter, W. G., J. Chem. Phys. 90, 4745 (1989).Google Scholar
[20] Cyvin, S. J., Brendsdal, E., Cyvin, B. N., and Brunvoll, J., Chem. Phys. Lett. 143, 377 (1988).Google Scholar
[21] Wu, Z. C., Jelski, D. A., and George, T. F., Chem. Phys. Lett. 137, 291 (1987).Google Scholar
[22] Jishi, R. A., Mirie, R. M., and Dresselhaus, M. S., Phys. Rev. B45 (1992). June 15.Google Scholar
[23] Al-Jishi, R. and Dresselhaus, G., Phys. Rev. B26, 4523 (1982).Google Scholar
[24] Fischer, J. E., Heiney, P. A., McGhie, A. R., Romanow, W. J., Denenstein, A. M., McCauley, J. P. Jr., and Smith, A. B. III, Science 252, 1288 (1991).Google Scholar
[25] Kratschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature 347, 354 (1990).CrossRefGoogle Scholar
[26] Duclos, S. J., Brister, K., Haddon, R. C., Kortan, A. R., and Thiel, F. A., Nature 351, 380 (1991).Google Scholar
[27] Harrison, W. A., Electronic Structure and the Properties of Solids (1980). W. H. Freeman and Co., San Francisco.Google Scholar