Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T11:46:05.713Z Has data issue: false hasContentIssue false

MOCVD Growth of InAlAsSb Layer for High-Breakdown Voltage HEMT Applications

Published online by Cambridge University Press:  01 February 2011

Haruki Yokoyama
Affiliation:
NTT Photonics Laboratories, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–0124 Japan
Hiroki Sugiyama
Affiliation:
NTT Photonics Laboratories, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–0124 Japan
Yasuhiro Oda
Affiliation:
NTT Photonics Laboratories, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–0124 Japan
Michio Sato
Affiliation:
NTT Photonics Laboratories, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–0124 Japan
Noriyuki Watanabe
Affiliation:
NTT Advanced Technology Corporation, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–0124 Japan
Takashi Kobayashi
Affiliation:
NTT Photonics Laboratories, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–0124 Japan
Get access

Abstract

This paper studies the decomposition characteristic of group-III sources during InAlAsSb growth on InP substrates by metalorganic chemical vapor deposition (MOCVD) using trimethylindium (TMI), trimethylaluminum (TMA), trimethylantimony (TMSb) and arsine (AsH3). A composition analysis of InAlAsSb layers shows that the group-III compositions in the InAlAsSb layer change remarkably when the flow rate of the group-V source is varied. To clarify the reason for this phenomenon, the growth rates of InAsSb and AlAsSb component are examined. Their changes indicate that TMSb suppresses the decomposition of TMA while AsH3 enhances it. Moreover, the HEMT structure with InP/InAlAsSb Schottky barrier layer, whose InP layer acts as a recess-etch-stop layer, is fabricated for the first time. The I-V characteristics of a fabricated Schottky barrier diode indicate that the reverse leakage current of InP/InAlAsSb is about one order of magnitude smaller than that of commonly used InP/InAlAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Glisson, T. H., Hauser, J. R., Littlejohn, M. A. and Williams, C. K., J. Electric Mater. 7, 1(1978).Google Scholar
2. Chang, J. R., Su, Y. K., Lin, C. L., Wu, K. M., Lu, Y. T., Jaw, D. H., Shiao, H. P. and Lin, W., Appl. Phys. Lett. 74, 3495(1999).Google Scholar
3. Turner, Q. W., Choi, H. K. and Le, H. Q., J. Vac. Sci. Technol. B12(2), 699(1995).Google Scholar
4. Washington, D., Hogan, H., Chow, P., Golding, T., Littler, C. and Kirschbaum, U., J. Vac. Sci. Technol. B16(3), 1385(1998).Google Scholar
5. Wilk, A., Fraisse, B., Christol, P., Bissier, G., Grech, P., Gazouli, M. E., Rouillard, Y., Baranov, A. N. and Joullie, A., J. Crystal Growth 227–228, 586(2001).Google Scholar
6. Chang, J. R., Su, Y. K., Jaw, D. H., Shiao, H. P. and Lin, W., J. Crystal Growth 203, 481(1999).Google Scholar
7. Docter, D., Matloubian, M., Micovic, M., Nguyen, C., Ngo, C., Bui, S. and Janke, P., Device Research Conference Digest, 1999 57th Annual, 146(1999).Google Scholar
8. Yokoyama, H., Enoki, T., Umeda, Y., Kobayashi, T., and Ishii, Y., Proc. 8th European Workshop on Metal-Organic Vapor Phase Epitaxy and Related Growth Techniques, 309(1999).Google Scholar
9. Asahi, H., Taneko, T., Okuno, Y. and Gonda, S., J. Crystal Growth 107, 1009(1991).Google Scholar
10. okuno, Y., Asahi, H., Liu, X. F., Inoue, K., Itani, Y., Asami, K. and Gonda, S., J. Crystal Growth 127, 143(1993).Google Scholar
11. Stringfellow, G. B., ORGANOMETALLIC VAPOR-PHASE EPITAXY, (Academic Press, Inc., San Diego, 1989), pp. 186189.Google Scholar