Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T13:46:52.072Z Has data issue: false hasContentIssue false

Mocvd Growth of GaAs on Si

Published online by Cambridge University Press:  28 February 2011

Masahiro Akiyama
Affiliation:
Semiconductor Technology Laboratory, Oki Electric Industry Co.,Ltd. 550–5 Higashiasakawa, Hachioji, Tokyo 193, Japan
Takash Ueda
Affiliation:
Semiconductor Technology Laboratory, Oki Electric Industry Co.,Ltd. 550–5 Higashiasakawa, Hachioji, Tokyo 193, Japan
Sachiko Onozawa
Affiliation:
Semiconductor Technology Laboratory, Oki Electric Industry Co.,Ltd. 550–5 Higashiasakawa, Hachioji, Tokyo 193, Japan
Get access

Abstract

The initial stage of the growth of GaAs on Si by, MOCVD, the reduction of the residual dislocations by annealing at high temperatures and the dependence of the growth temperature on the stress in the GaAs layer were studied. The density and the size of deposited GaAs islands at the initial stage of the growth in the two-step growth sequence strongly affected the domain property of the subsequently grown layer. For reducing the residual dislocations by annealing at high temperatures, to repeat the growth and the annealing was more effective method compared with the other annealing methods we tried. The stress in the GaAs layers showed a constant value independently of the growth temperature and the value was related to the thermal expansion between room temperature and about 350°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) See, for example, Mat. Res. Soc. Symp. Proc. 67 (1986)Google Scholar
2) See, for example, Mat. Res. Soc. Symp. Proc. 91 (1987)Google Scholar
3) Bieglsen, D.K., Ponce, F.A., Smith, A.J. and , Tramontana; Mat. Res. Soc. Symp. Proc. 67, 45 (1986)Google Scholar
4) Harris, J.S. Jr., Koch, S.M. and Rosner, S.J.; Mat. Res. Soc. Symp. 91. 3 (1987)Google Scholar
5) Takasugi, H., Ueda, T., Kawabe, M. and Bando, Y.; Ext. Abst. 18th Conf. Solid State Dev. and Mat. 109 (1986)Google Scholar
6) Takasugi, H., Kawabe, M., Bando, Y.; Jpn. J. Appl. Phys. 26, L584 (1987)Google Scholar
7) Akiyama, M., Kawarada, Y. and Kaminishi, K.; Jpn. J. Appl. Phys. 23, L843 (1984)Google Scholar
8) Ishida, K., Akiyama, M. and Nishi, S.; Jpn. J. Appl. Phys. 25, L288 (1986)Google Scholar
9) Chand, N., People, R., Baiocchi, F.A., Wecht, K.W. and Cho, A.Y.; Appl. Phys. Lett. 49, 815 (1986)Google Scholar
10) Lee, J.W., Shichijo, H., Tsai, H.L. and Matyi, R.J.; Appl. Phys. Lett. 50, 31 (1987)Google Scholar
11) Choi, C., Otsuka, N., Munns, G., Houdre, R., Morkoq, H., Zhang, S.I., Levi, D. and Klein, M.V.; Appl. Phys. Lett. 50, 992 (1987)Google Scholar
12) Okamoto, H., Watanabe, Y., Kadota, Y. and Ohmachi, Y.; Jpn. J. Appl. Phys. 26, L1950 (1987)Google Scholar
13) Soga, T. and Hattori, S.; J. Appl. Phys. 57, 4578 (1985)Google Scholar
14) Fischer, R., Newman, D., Zabel, H. and Morkoq, H.; Appl. Phys. Lett. 48, 1223 (1986)Google Scholar
15) Nishimura, T., Mizuguchi, K., Hayafuji, N. and Murotani, T.; Jpn. J. Appl. Phys. 26, L1141 (1987)CrossRefGoogle Scholar
16) El-Masry, N., Hamaguchi, N., Tarn, J.C.L., Karam, N., llumphreys, T.P., Moor, D., Bedair, S.M.; Mat. Res. Soc. Symp. Proc. 91, 99 (1987)Google Scholar
17) Shimizu, M., Sugawara, K. and Sakurai, T.; J. Jpn. Assoc. Cryst. Growth 13 253 (1986) [in Japanese]Google Scholar
18) Ishida, K., Akiyama, M. and Nishi, S.; Jpn. J. Appl. Phys. 26, L163 (1987)Google Scholar
19) Drum, C.M. and Rand, M.J.; J. Appl. Phys. 39, 4458 (1968)Google Scholar
20) Brantley, W.A.; J. Appl. Phys. 44, 534 (1973)Google Scholar
21) Yokoyama, S., Yui, D., Shiraishi, T. and Kawabe, K.; Ext. Abst. 19th Conf. Solid State Dev. and Mat. 147 (1987)Google Scholar