Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-18T17:56:31.591Z Has data issue: false hasContentIssue false

Mixing of a Granular Material in a Bidimensional Rotating Drum

Published online by Cambridge University Press:  03 September 2012

Eric Clement
Affiliation:
Laboratoire A.O.M.C. - URA 800 - Université Pierre et Marie Curie, 4, pl. Jussieu - B86, 75005, FRANCE
Jean Rajchenbach
Affiliation:
Laboratoire A.O.M.C. - URA 800 - Université Pierre et Marie Curie, 4, pl. Jussieu - B86, 75005, FRANCE
Jacques Duran
Affiliation:
Laboratoire A.O.M.C. - URA 800 - Université Pierre et Marie Curie, 4, pl. Jussieu - B86, 75005, FRANCE
Get access

Abstract

We report experimental measurements on mixing properties in bidimensional rotating drum. Using an image processing device, we follow the trajectories of tracer particles in a monodisperse assembly of beads. Tracer particles with different size ratios exhibit a violent segregation effect: a smaller particle has a tendency to stay in the centre and a larger one will rather dwell on the edges. Furthermore, for a tracer of identical size, we evidence a specific dispersion property where the centre and the edges are competing attractors of the mixing dynamics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weidenbaum, S.S., Mixing of Solids, Advance in Chemical Engineering, ed. by Drew, T.B. and Hoopes, J.W., 2, 211 (1959).Google Scholar
2. Oyama, Y., Bull.Inst.Phys.Chem.Res. Tokyo, 18, 600 (1939).Google Scholar
3. Cooke, M.H., Stephens, D.J. and Bridgewater, J., Powder Technology 15, 1 (1976).Google Scholar
4. Gupta, S. Das, Khakar, D.V. and Bathia, S.K., Chem. Eng. Science 46, 1513 (1991).Google Scholar
5. Nakagawa, M., Chem.Eng.Scien.-Shorter Com., 49, 2544 (1994).Google Scholar
6. Bridgewater, J., Sharpe, N.W., Stocker, D.C., Trans.Instn.Chem.Engrs, 47, 114 (1969).Google Scholar
7. Zik, O., Levine, D., Lipson, S.G., Shtirkman, S. and Stavans, J., Phys.Rev.Lett to be published (1994).Google Scholar
8. Hill, K.M. and Kaliakos, J., Phys.Rev. E 49, 3610 (1994).Google Scholar
9. Cantelaube et, F. Bideau, D., preprint (1994).Google Scholar
10. Bauman, G., Janosi, I. and Wolf, D., Europhys.Lett 24, 203 (1994).Google Scholar
11. Ristow, G., preprint (1994).Google Scholar
12. Rajchenbach, J., Phys.Rev.Lett 65, 2221 (1990).Google Scholar
13. Evesque, P. and Rajchenbach, J., C.R. Acad. Scien. (Paris) 307, Serie II, 223 (1988).Google Scholar
14. Jaeger, H.M., Liu, C.h. and Nagel, S.R., Phys.Rev.lett. 62,40, (1989).Google Scholar
15. , Morales-Gamboa et al. Phys.Rev. E 47, 2229 (1993)Google Scholar
16. Cantelaube, F., Limon-Duparemeur, Y., Bideau, D. and Ristow, G, to appear in J.de Physique 1 (1994).Google Scholar
17. Clément, E., Duran, J. and Rajchenbach, J., in Compte Rendus du 110° Congrès de la Société Française de Méanique, Vol.4, p.327 (1993).Google Scholar