Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T05:14:46.855Z Has data issue: false hasContentIssue false

Minoritary Transport in Heavily Doped p-type InGaAs

Published online by Cambridge University Press:  31 January 2011

Eric Tea
Affiliation:
eric.tea@u-psud.frerc_t@yahoo.fr, Institut d'Electronique Fondamentale, UMR 8622 CNRS, Orsay, France
Frederic Aniel
Affiliation:
frederic.aniel@u-psud.fr, Institut d'Electronique Fondamentale, UMR 8622 CNRS, Orsay, France
Get access

Abstract

Minoritary carrier’s transport properties are of fundamental importance in the HBT’s physics. The base transit time is a key parameter to improve microwave figure of merit. Some recent minoritary electron mobilities measurements versus acceptor doping level using magneto transport method exhibit a dramatic increase at very high majority carrier concentration. This effect has been attributed to the coupling of polar optical phonons with hole plasmons (LOPC) which controls the balance between enegy gain by electric field acceleration and energy loss by polar optical phonon emission. We present minoritary mobilities as a function of majority carrier doping calculated in the frame of electrons and holes Monte Carlo modelling including LOPC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Harmon, E.S. Lovejoy, M.L. Melloch, M.R. Lundstrom, M.S. Lyon, T.J. de and Woodall, J.M. Appl. Phys. Lett. 63, 536 (1993).Google Scholar
2 Harmon, E.S. Lovejoy, M.L. Melloch, M.R. Lundstrom, M.S. Ritter, D. and Hamm, R.A. Appl. Phys. Lett. 63, 636 (1993).Google Scholar
3 Kaneto, T. Kim, K.W. and Littlejohn, M.A. Phys. Rev. B47, 16257 (1993).Google Scholar
4 Jacoboni, C. and Reggiani, L. Rev. Mod. Phys 55, 645 (1983).Google Scholar
5 Chelikowsky, J.R. and Cohen, M.L., Phys. Rev. B14, 556 (1976).Google Scholar
6 Wiley, J.D. Phys. Rev. B4, 2485 (1971).Google Scholar
7 Ferry, D.K. Goodnick, S.M. and Hess, K., Physica B272, 538 (1999).Google Scholar
8 Ferry, D.K. in Semiconductor Transport, ed. Taylor & Francis (2000) pp. 186189.Google Scholar
9 Harrison, J.W. and Hauser, J.R. Phys. Rev. B13, 5347 (1976).Google Scholar
10 Kim, M.E. Das, A. and Senturia, S.D. Phys. Rev. B18, 6890 (1978).Google Scholar
11 Mermin, N.D. Phys. Rev. B1, 2362 (1970).Google Scholar
12 Meyer, J.R. and Bartoli, F.J. Phys. Rev. B28, 915 (1983).Google Scholar
13 Sicault, D. Tessier, R. Pardo, F. Pelouard, J.L. and Molot, F. Phys. Rev. B65, 121301 (2002).Google Scholar
14 Degani, J. Leheny, R.F. Nahory, R. E and Heritage, J.P. Appl. Phys. Lett. 39, 569 (1981).Google Scholar