Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T17:29:43.725Z Has data issue: false hasContentIssue false

Migration of Radionuclides in Geologic Media: Fundamental Research Needs

Published online by Cambridge University Press:  28 February 2011

D. T. Reed
Affiliation:
Chemical Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439–4837
J. M. Zachara
Affiliation:
Pacific Northwest Laboratory, P. O. Box 999, Richland, WA 99352
R. E. Wildung
Affiliation:
Pacific Northwest Laboratory, P. O. Box 999, Richland, WA 99352
F. J. Wobber
Affiliation:
U.S. Department of Energy, ER-75, Washington, DC 20555
Get access

Abstract

An assessment of the fundamental research needs in understanding and predicting the migration of radionuclides in the subsurface is provided. Emphasis is on the following three technical areas: (1) aqueous speciation of radionuclides, (2) the interaction of radionuclides with substrates, and (3) intermediate-scale interaction studies. This research relates to important issues associated with environmental restoration and remediation of DOE sites contaminated with mixed radionuclide-organic wastes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. U.S. Department of Energy, “Subsurface Science Program: Program Overview and Research Abstracts, FY89–FY90,” U.S. Department of Energy, Office of Energy Research, DOE/ER-0432 (1990).Google Scholar
2. Ames, L. L., McGarrah, J. E., Walker, B. A., and Salter, P. F., “Sorption of Uranium and Cesium by Hanford Basalts and Associated Secondary Smectite,” Chem. Geol. 35, 205 (1982).Google Scholar
3. Strickert, R., Friecfman, A. M., and Fried, S., “The Sorption of Technetium and Iodine Radioisotopes by Various Minerals,” Nucl. Technol. 49, 253 (1980).Google Scholar
4. Keeney-Kinnicutt, W. L. and Morse, F. W., “The Redox Chemistry of Pu02 + Interaction with Common Mineral Surfaces in Dilute Solutions and Seawater,” Geochim. Cosmochim. Acta 49, 2577 (1985).Google Scholar
5. Sanchez, A. L., Murray, J. W., and Sibley, T. H., “The Absorption of Plutonium IV and V on Goethite,” Geochim. Cosmochim. Acta 49, 2297 (1985).CrossRefGoogle Scholar
6. Barney, G. S., “Sorption and Desorption Reactions of Radionuclides with a Crushed Basalt-Bentonite Packing Material,” Rockwell Hanford Operations report RH0-BW-SA-416P (1985).Google Scholar
7. Jackson, R. E. and Inch, K. J., “Partitioning of Sr-90 Among Aqueous and Mineral Species in a Contaminated Aquifer,” Environ. Sci. Technol. 17, 231237 (1983).Google Scholar
8. Moran, K. A., Cherry, J. A., Dave, N. K., Lim, T. P., and Vlvyurka, A. J., “Migration of Acidic Groundwater Seepage from Uranium-Tai11ngs Impoundments. I. Field Study and Conceptual Hydrogeochemlcal Model,” J. Contam. Hydrol. 2, 271303 (1988).Google Scholar
9. Sposito, G., “Distinguishing Adsorption from Surface Precipitation,” in Geochemical Processes of Mineral Surfaces, Davis, J. A. and Hayes, K. F., eds., ACS Symposium Series #323, 217–228 (1986).Google Scholar
10. Sposito, G., The Surface Chemistry of Soils, Oxford University Press, New York, NY (1984).Google Scholar
11.Kent, D. B., Tripathi, V. S., Ball, N. B., Lechkie, J. O., and Slegel, M. D., “Surface Complexation Modeling of Radionuclide Adsorption in Subsurface Environments,” U.S. Nuclear Regulatory Commission report NUREG/CR-4807 (1988).Google Scholar
11. Kent, D. B., Tripathi, V. S., Ball, N. B., Lechkie, J. O., and Slegel, M. D., “Surface Complexation Modeling of Radionuclide Adsorption 1n Subsurface Environments,” U.S. Nuclear Regulatory Commission report NUREG/CR-4807 (1988).Google Scholar
12. Davis, J. A. and Kent, D. B., “Surface Complexation Modeling Aqueous Geochemistry,” in Mineral-Water Interface Geochemistry, Hochella, M. F. and White, A. F., eds., Reviews in Mineralogy, Vol. 23, Mineralogical Society of America (1990).Google Scholar
13. Hsi, C-K. D. and Langmuir, D., “Adsorption of Uranyl on to Ferric Oxyhydioxides: Application of the Surface Complexation Site Binding Model,” Geochim. Cosmochim. Acta 49, 19311941 (1985).Google Scholar
14. Girvin, D. C., Ames, L. L., Schwab, A. P., and McGarrah, J. E., “Neptunium Adsorption on Synthetic Amorphous Iron Oxyhydroxide,” J. Colloid Inter. Sci. (1991).Google Scholar
15. Hunter, K. A., Hawke, D. J., and Choo, L. K., “Equilibrium Adsorption of Thorium by Metal Oxides in Marine Electrolytes,” Geochim. Cosmochim. Acta 52, 627636 (1988).CrossRefGoogle Scholar
16. Killey, R. W., McHugh, J. O., Champ, D. R., Cooper, E. L., and Young, J. L., “Subsurface Cobalt-60 Migration from a Low Level Waste Disposal Site,” Environ. Sci. Technol. 18, 148157 (1984).Google Scholar
17. Ho, C. H. and Miller, N. H., “Effect of Humic Acid and Uranium Uptake by Hematite Particles,” J. Colloid Inter. Sci. 106, 281288 (1985).CrossRefGoogle Scholar
18. Allard, B., Moulin, V., Basso, L., Tran, M. T., and Stammore, D., “Americium Sorption on Alumina in Presence of Humic Materials,” Geoderma 44, 181187 (1989).Google Scholar
19. Davis, J. A. and Gloor, R., “Adsorption of Dissolved Organics in Lakewater by Aluminum Oxide: Effect of Molecular Weight,” Environ. Sci. Technol. 15, 12231229 (1981).CrossRefGoogle Scholar
20. Jardine, P. M., Weber, N. L., and McCarthy, J. F., “Mechanisms of Dissolved Organic Carbon Adsorption on Soil,” Soil Sci. Soc. Am. J. 53, 13781385 (1989).Google Scholar
21. Murphy, E. M., Zachara, J. M., and Smith, S. C., “Influence of Mineral-Bound Humic Substances on the Sorption of Hydrophobic Organic Compounds,” Environ. Sci. and Technol. 24, 15071516 (1990).CrossRefGoogle Scholar
22. Davis, J. A., “Complexation of Trace MetaTs by Adsorbed Organic Materials,” Geochim. Cosmochim. Acta 48, 679691 (1984).CrossRefGoogle Scholar
23. Zachara, J. M., Ainsworth, C. C., Cowan, C. E., and Resch, C. T., “Adsorption of Chromate by Subsurface Soil Horizons,” Soil Sc1. Soc. Am. J. 53, 418 (1989).Google Scholar
24. “Chemistry and Migration Behaviour of Actinides and Fission Products 1n the Geospheres,” Proc. of the Int. Conf., R. Oldenbourg Verlag, Munich (1988).Google Scholar
25. “Chemistry and Migration Behaviour of Actinides and Fission Products 1n the Geospheres,” Proc. of the Int. Conf., R. Oldenbourg Verlag, Munich (1990).Google Scholar
26. Beitz, J. V., Bowers, D. L., Doxtader, M. M., Maroni, V. A., and Reed, D. T., “Detection and Speciation of Transuranium Elements in Synthetic Groundwater Via Pulsed-Laser Excitation,” Radiochim. Acta 44 /45, 87 (1988).Google Scholar
27. Ittner, Th., Torstenfelt, B., and Allard, B., “Diffusion of Neptunium, Plutonium, and Americium in Granitic Rock,” Radiochim. Acta 44 /45, 171 (1988).Google Scholar
28. Nietsche, H., “Solubility Studies of Transuranium Elements for Nuclear Waste Disposal: Principles and Overview,” Presented at the Second Int. Conf. on Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere, Monterey, CA (1989).Google Scholar
29. Albinsson, Y., Forsyth, R., Skarnemark, G., Skalberg, M., Tosstenfelt, B., and Werme, L., “Leaching/Migration of U02-Fuel in Compacted Bentonite,” Mat. Res. Soc. Symp. Proc. Vol. 176, 559 (1990).Google Scholar
30. Stumpe, R., Kim, J. I., Schrepp, W., and Walther, H., “Speciation of Actinide Ions in Aqueous Solution by Laser-Induced Pulsed Photoacoustic Spectroscoy,” Appl. Phys. B 34, 203 (1984).Google Scholar
31. Bidoglio, C., Avogadro, A., DePlano, A., and Lazzari, G. P., “Reaction Pathways of Pu and Np in Selected Natural Water Environments,” Radiochim. Acta 44 /45, 29 (1988).Google Scholar
32. Bulman, R. A. and Cooper, J. R., eds., Speciation of Fission and Activation Products in the Environment, Elsevier Applied Science Publishers, New York (1985).Google Scholar
33. Hansen, W. C., ed., “Transuranic Elements in the Environment,” U.S. DOE report DOE/TIC-22800 (1980).Google Scholar
34. Toste, A. P., Lucke, R. B., Lechner-Fish, T. J., Hendren, D. J. and Meyers, R. B., “Organic Analyses of Mixed Nuclear Wastes,” in Waste Managment 87, CONF-870306, pp. 323–330 (1987).Google Scholar
35. Wolery, T. J., “Calculation of Chemical Equilibrium Between Aqueous Solutions and Minerals: The EQ3/EQ6 Software Package,” Lawrence Livermore National Laboratory report UCRL-52658 (1979).CrossRefGoogle Scholar
36. Langmuir, D., “Uranium Solution-Mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits,” Geochim. Cosmochim. Acta 42, 547 (1978).Google Scholar
37. Lemire, R. J. and Tremaine, P. R., “Uranium and Plutonium Equilibria 1n Aqueous Solutions to 200°C,” J. Chem. Eng. Data 25, 361 (1980).Google Scholar
38. Silva, R. J., “The Behavior of Americium in Aqueous Carbonate Systems,” Mat. Res. Soc. Symp. Proc. Vol. 26, 875 (1984).Google Scholar
39. Kim, J. I., Lierse, C., and Baumgartner, F., “Complexation of the Plutonium (IV) Ion in Carbonate-Bicarbonate Solutions,” in ACS Symp. Ser. No. 216, eds. Carnall, W. T. and Choppln, G. R., American Chemical Society, Washington DC, p. 317.Google Scholar
40. Hobart, D. E., Palmer, P. D. and Newton, T. W., “The Carbonate Complexation of Plutonium(IV),” Los Alamos National Laboratory report LA-UR-85.Google Scholar
41. Okajima, S. and Reed, D. T., Argonne National Laboratory, unpublished results (1991).Google Scholar
42. Nelson, D. M. and Lovett, M. B., Nature 276, 599 (1978).Google Scholar
43. Choppin, G. R. and Allard, B., “Complexes of Actinides with Naturally Occurring Organic Compounds,” Handbook on the Physics and Chemistry of the Actinides. Freedman, A.J. and Keller, C., eds., Elsevier Science Publishers, 407 (1985).Google Scholar
44. Seefeldt, W. B., Tse, P.-K., Fredrickson, D. R., Reichley-Yinger, L., Chaiko, D. J., Kwok, J. D., Lorton, S., Sabau, C. S., Sedlet, J., Shlnn, W., Simonzadeh, N., and Vandegrlft, G. F., “The Generic TRUEX Mode, Volume Three - Experimental Data Base Generated in Support of the Model,” Argonne National Laboratory report ANL-89/19 (1989).Google Scholar
45. Beitz, J. V., Doxtader, M. M., Maronl, V. A., Okajima, S., and Reed, D. T., “High Sensitivity Photoacoustic Spectrometer for Variable Temperature Solution Studies”, Rev. Sci. Instrum. 61(5) 1990.Google Scholar
46. Zachara, J. M., “Design of Field-Scale Experiments for Research 1n Subsurface Transport of Organic Chemicals,” U.S. Department of Energy, Office of Energy Research, DOE/ER-0230 (1984).Google Scholar
47. Streile, G. P., Zachara, J. M., Fredrickson, J. K., and Wobber, F. J., “A Review of Intermediate-Scale Experiments for Subsurface Microbiology and Chemistry,” U.S. Department of Energy, Office of Energy Research, DOE/ER-0383 (1988).Google Scholar
48. Schwille, F., Dense Chlorinated Solvents in Porous and Fractured Media - Model Experiments, English Language Edition, Lewis Publishers, Chelsea, Michigan (1988).Google Scholar
49. Schiegg, H. O., “Displacement Simulation of Three Nonmiscible Fluids 1n Porous Media (Propagation of Hydrocarbons in Aquifers),” No. 40 (in German). Mitteilungen der Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie an der Eldgenossischen Technischen Hochschule Zurich Herausgegeben von Prof. Dr. D. Vischer, Swiss Federal Institute of Technology, Zurich, Switzerland (1979).Google Scholar
50. Schiegg, H. O., “Fundamentals, Set-Up and Results of Laboratory Experiments on Research of Oil Propagation in Aquifers,” No. 43 (in German). Mitteilungen der Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie an der Eldgenossischen Technischen Hochschule Zurich Herausgegeben von Prof. Dr. D. Vischer, Swiss Federal Institute of Technology, Zurich, Switzerland (1979).Google Scholar
51. Van Genuchten, M. Th., “Analytical Solutions for Chemical Transport with Simultaneous Adsorption, Zero-Order Production and First-Order Decay,” J. Hydrol. 49, 213233 (1981).Google Scholar
52. Jury, W. A., Spencer, W. F., and Farmer, W. J., “Behavior Assessment Model for Trace Organics in Soil: I. Model Description,” J. Environ. Qual. 12, 558–554 (1983).CrossRefGoogle Scholar
53. Borden, R. C. and Bedient, P. B., “Transport of Dissolved Hydrocarbons Influenced by Oxygen-Li mi ted Biodegradation: 1. Theoretical Development,” Water Resour. Res. 22(13), 19731982 (1986).Google Scholar
54. Molz, F. J., Widdowson, M. A., and Benefield, L. D., “Simulation of Microbial Growth Dynamics Coupled to Nutrient and Oxygen Transport in Porous Media,” Water Resour. Res. 22(8), 12071216 (1986).Google Scholar
55. Kindred, J. S. and Celia, M. A., “Contaminant Transport and Biodegradation. 2. Conceptual Model and Test Simulations,” Water Resour. Res. 25, 11491159 (1989).Google Scholar
56. Van Genuchten, M. Th., Davidson, J. M., and Wierenga, P. J., “An Evaluation of Kinetic and Equilibrium Equations for the Prediction of Pesticide Movement Through Porous Media,” Soil Sci. Soc. Am. Proc. 38, 2935 (1974).Google Scholar
57. Okubo, T. and Matsumoto, J., “Biological Clogging of Sand and Changes of Organic Constituents During Artificial Recharge,” Water Resour. Res. 17(7), 813821 (1983).Google Scholar
58. Ogram, A. V., Jessu, R. E., Ou, L. T., and Rao, P. S. C., “Effects of Sorption on Biological Degradation Rates of (2,4-Dichlorophenoxy) Acetic Acid in Soils,” Appl. Environ. Microb. 49, 582587 (1985).Google Scholar
59. Silliman, S. E. and Simpson, E. S., “Laboratory Evidence of the Scale Effect in Dispersion of Solutes in Porous Media,” Water Resour. Res. 23(8), 16671673 (1987).Google Scholar
60. Silliman, S. E., Konikow, L. F., and Voss, C. I., “Laboratory Investigation of Longitudinal Dispersion in Anisotropic Porous Media,” Water Resour. Res. 23(11), 21452151 (1987).Google Scholar
61. Dagan, G., “Statistical Theory of Groundwater Flow and Transport; Pore to Laboratory, Laboratory to Formation, and Formation, and Formation to Regional Scale,” Water Resour. Res. 22(9), 120S134S (1986).Google Scholar
62. Baveye, P. and Sposito, G., “The Operational Significance of the Continuum Hypothesis in the Theory of Water Movement Through Soils and Aquifers,” Water Resour. Res. 20, 521530 (1984).Google Scholar
63. Cushman, J. M., “On Unifying the Concept of Scale, Instrument, and Stochastics in Development of Multiphase Transport Theory,” Water Resour. Res. 20, 16681676 (1984).Google Scholar
64. Gelhar, L., “Stochastic Subsurface Hydrology from Theory to Applications,” Water Resour. Res. 22(9), 135S145S (1986).Google Scholar