Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T00:15:03.982Z Has data issue: false hasContentIssue false

Microwave Imaging Techniques for Non-Destructive Testing of Materials

Published online by Cambridge University Press:  25 February 2011

J.Ch. Bolomey
Affiliation:
Groupe d'Electromagnétisme, Laboratoire des Signaux et Systèmes (CNRS/ESE) Ecole Supérieure d'Electricité, Plateau de Moulon, F 91192 Gif-sur-Yvette Cedex, France
Ch. Pichot
Affiliation:
Groupe d'Electromagnétisme, Laboratoire des Signaux et Systèmes (CNRS/ESE) Ecole Supérieure d'Electricité, Plateau de Moulon, F 91192 Gif-sur-Yvette Cedex, France
Get access

Abstract

Recent technological advances for microwave multiport sensors lead us to look for efficient wavefront processing techniques in order to improve image quality, in terms of spatial resolution and contrast. This paper reviews some of these techniques which can be used for Non-Destructive Testing purposes. Mutual advantages and limitations are analysed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bolomey, J.Ch., Cottard, G., Cown, B.J., On-line transverse control of materials by means of microwave imaging techniques, in Microwave Processing of Materials II, edited by Snyder, W.B., Sutton, W.H., Iskander, M.F., Johnson, D.L., Mat. Res. Soc. Symp. Vol. 189, 4953, (1991)Google Scholar
2. Clemmow, P.C., The Plane Wave Representation of Electromagnetic Fields, Pergamon Press (1966)Google Scholar
3. Pichot, Ch., Jofre, L., Peronnet, G., Bolomey, J.Ch., Active microwave imaging of inhomogeneous bodies, IEEE Trans. Ant. Propagat.,AP–33,416425, (1985)Google Scholar
4. Bolomey, J.Ch. and Pichot, Ch., Microwave Tomography: from theory to practical imaging systems, Int. J. Imaging Syst. Technol.,1, 119131, (1990)Google Scholar
5. Chommeloux, L., Pichot, Ch., Bolomey, J.Ch., Electromagnetic modeling for microwave imaging of cylindrical buried inhomogeneities, IEEE Trans. Microwave Theory Tech., MTT–34,10641076, (1986)Google Scholar
6. Bolomey, J.Ch., Pichot, Ch., Gaboriaud, G., Planar microwave imaging camera for biomedical applications: critical and prospective analysis of reconstruction algorithms, Radio Science, 26, n°12, 541549, (1991)Google Scholar
7. Pichot, Ch. and Trouillet, P., Diagnostic of reinforced structures: an active microwave imaging method, in Bridge Evaluation. Repair and Rehabilitation, NATO ASI Series, edited by Nowak, A.S., Kluwer Academic Publishers, Dordrecht, (1991)Google Scholar
8. Joachimowicz, N., Pichot, Ch., Hugonin, J.P., Inverse scattering: an iterative numerical method for electromagnetic imaging, IEEE Trans. Ant. Propagat., AP–39, 17421752, (1991)Google Scholar
9. Joachimowicz, N., Bolomey, J.Ch., Pichot, Ch., Franchois, A., Hugonin, J.P., Garnero, L., Gaboriaud, G., Quantitative microwave tomography for non-invasive control of hyperthermia. Preliminary numerical results, Journal of Photographic Science, 39,149153, (1991)Google Scholar
10. Wang, Y.M., Chew, W.C., An iterative solution of two-dimensional electromagnetic inverse scattering, Int. J. Imaging Syst. Technol.,1, 100108, (1989)Google Scholar
11. Chew, W.C., Wang, Y.M., Reconstruction of two-dimensional permittivity distribution using the Distorted Born Iterative Method, IEEE Trans. Med. Imag., MI–9 218225, (1990)Google Scholar