Skip to main content Accessibility help

Microwave Activation of Dopants & Solid Phase Epitaxy in Silicon

  • Douglas C. Thompson (a1), J. Decker (a2), T. L. Alford (a3), J. W. Mayer (a4) and N. David Theodore (a5)...


Microwave heating is used to activate solid phase epitaxial re-growth of amorphous silicon layers on single crystal silicon substrates. Layers of single crystal silicon were made amorphous through ion implantation with varying doses of boron or arsenic. Microwave processing occurred inside a 2.45 GHz, 1300 W cavity applicator microwave system for time-durations of 1-120 minutes. Sample temperatures were monitored using optical pyrometery. Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy were used to monitor crystalline quality in as-implanted and annealed samples. Sheet resistance readings show dopant activation occurring in both boron and arsenic implanted samples. In samples with large doses of arsenic, the defects resulting from vacancies and/or micro cluster precipitates are seen in transmission electron micrographs. Materials properties are used to explain microwave heating of silicon and demonstrate that the damage created in the implantation process serves to enhance microwave absorption.



Hide All
1 Rzhanov, A. V., Gerasimenko, N. N., Vasil'ev, S. V. and Obodnikov, V. I., Sov. Tech. Phys. Lett. 7, 521, (1981)
2 Zhang, S.-L., Buchta, R. and Sigurd, D., Thin Solid Films, 246, 151 (1994).
3 Zohm, H., Kasper, E., Mehringer, P. and Müller, G. A., Microelec. Eng. 54 247 (2003).
4 Thompson, K., Booske, J. H., Cooper, R. F. and Gianchandani, Y. B., Mat. Res. Soc. Symp. Proc. 717 (2002).
5 Buchta, R., Zhang, S.-L., and Sigurd, D., Appl. Phys. Lett. 62, 3153 (1993).
6 Schroder, D. K., Semiconductor Material and Device Characterization, John Wiley & Sons, Hoboken, New Jersey (2006).
7 Thompson, D. C., Kim, H. C., Alford, T. L., Mayer, J. W., Appl. Phys. Lett. 83, 3918 (2003).
8 Thompson, D. C., Alford, T. L., Mayer, J. W., Höchbauer, T., Nastasi, M., Lau, S. S., Theodore, N. David, Henttinen, K., Suni, Ilkka and Chu, Paul K., Appl. Phys. Lett. 87, 224103 (2005).
9 Sato, T., Jpn. J. Appl. Phys. 6, 339 (1967).
10 Doolittle, L. R., Nuclear Instruments & Methods in Physics Research, B B9, 344351 (1985).
11 Cullity, B. D. and Stock, S. R., Elements of X-Ray Diffraction, Prentice Hall, Upper Saddle River, NJ (2001).
12 Zeigler, J. F., IBM Research, Yorktown, NY, 10598.
13 Mayer, J. W., Lau, S. S., Electronic Materials Science: For Integrated Circuits in Si and GaAs, Macmillan Publishing Company, New York, NY (1990).
14 Plummer, J. D., Deal, M. D., Griffin, P. B., Silicon VLSI Technology: Fundamentals, Practice and Modeling, Prentice Hall, Upper Saddle River, NJ (2000).
15 Jones, K. S., Prussin, S. and Weber, E. R., Appl. Phys. A 45, 1 (1998).
16 Metaxas, A. C., Meredith, R. J., Industrial Microwave Heating, IEEE Power Engineering Series 4, (Peter Peregrinus Ltd, London, U. K. 1983).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed