Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T15:26:50.925Z Has data issue: false hasContentIssue false

Microwave Absorbing Ferrite Thin Films for Microwave Heating of Microstructured Reactors

Published online by Cambridge University Press:  31 January 2011

Pengzhao Gao
Affiliation:
pzgao@125.com, Hunan University, Materials Science and Engineering, Changsha, China
Evgeny V. Rebrov
Affiliation:
e.rebrov@tue.nl, Eindhoven University of Technology, Eindhoven, Netherlands
Jaap C. Schouten
Affiliation:
jc.schouten@tue.nl, Eindhoven University of Technology, Eindhoven, Netherlands
Richard Kleismit
Affiliation:
richard.kleismit@wright.edu, Wright State University, Physics, Dayton, Ohio, United States
John Cetnar
Affiliation:
cetnar.3@wright.edu, Wright State University, Physics, Dayton, Ohio, United States
Guru Subramanyam
Affiliation:
guru.subramanyam@notes.udayton.edu, University of Dayton, Electrical &Computer Engineering, Dayton, Ohio, United States
Gregory Kozlowski
Affiliation:
gregory.kozlowski@wright.edu, Wright State University, Physics, Dayton, Ohio, United States
Get access

Abstract

Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by sol–gel method on polycrystalline silicon substrates. The morphology and microwave absorption properties of the films calcined in the 673–1073 K range were studied by using XRD, AFM, near–field evanescent microwave microscopy, coplanar waveguide and direct microwave heating measurements. All films were uniform without microcracks. The increase of the calcination temperature from 873 to 1073 K and time from 1 to 3h resulted in an increase of the grain size from 12 to 27 nm. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2–15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315–355 K was observed in the film close to the critical grain size of 21 nm in diameter marked by the transition from single– to multi–domain structure of nanocrystals in Ni0.5Zn0.5Fe2O4 film and by a maximum in its coercivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kim, C.S. Yi, Y.S. Park, K.T. Namgung, H. and Lee, J.G. J. Appl. Phys. 85 5223 (1999).Google Scholar
2 Srivastava, A.K. Hurben, M.J. Wittenauer, M.A. Kabos, P. Patton, C.E. Rameh, R. P.C. Dorsey and Chrisey, D.B. J. Appl. Phys. 85 7838 (1999).Google Scholar
3 Amado, M. M. Rogalski, M.S. Guimarâes, L., Sousa, J. B. Bibicu, I. Welch, R.G. and Palmer, S.B. J. Appl. Phys. 83 6852 (1998).Google Scholar
4 Wee, A.T.A. Wang, J.P. Huan, A.C.H. Tan, L.P. Gopalakrishnan, R. and Tan, K.L. IEEE Trans. Magn. 33 2986 (1997).Google Scholar
5 Lisfi, A. Lodder, J.C. Haan, P. de, Smithers, M.A. and Roesthuis, F.J.G. IEEE Trans. Magn. 34 1654 (1998).Google Scholar
6 Takayama, A. Okuya, M. and Kaneko, S. Solid State Ionics, 172 257 (2004).Google Scholar
7 Verma, A. Geol, T.C. and Mendiratta, R.G. J. Magn. Magn. Mater. 208 13 (2000).Google Scholar
8 Sugimoto, T. Shimotsuma, Y. and Itoh, H. Powder Technol. 96 85 (1998).Google Scholar
9 Hochschild, R. and Fuess, H. J. Mater. Chem. 10 539 (2000).Google Scholar
10 Dias, A. and Moreira, R.L. Mater. Lett. 39 69 (1999).Google Scholar
11 Sedlar, M. Matejec, V. Grygar, T. and Kadlecova, J. Ceram. Int. 26 507 (2000).Google Scholar
12 Liu, W. and Wu, J. Mater. Chem. Phys. 69 148 (2001).Google Scholar
13 Mohallem, N.D.S. and Seara, L.M. Appl. Surf. Sci. 214 143 (2003).Google Scholar
14 Yan, W. Wang, L. Xia, Z. Cheng, M. Li, Q. and Zhang, Y. Mater. Res. Bull. 42 1468 (2007).Google Scholar
15 Kleismit, R.A., ElAshry, M. , Kozlowski, G., Amer, M.S., Kazimierczuk, M.K. and Biggers, R.R., Supercond. Sci. Technol. 18 1197 (2005).Google Scholar
16 Xiang, X.D. and Gao, C.. Mater. Character. 48 117 (2002).Google Scholar
17 Kleismit, R.A. Munbodh, K. Boeckl, J.J. Campbell, A.L. Koziol, K.K. Kozlowski, G. Hopkins, S.C. and Peterson, T.L. J. Nanoscience and Nanotechnology 9 1 (2009).Google Scholar
18 Sileo, E.E. Rotelo, R. and Jaboco, S.E. Phys. B320 257 (2002).Google Scholar
19 Kleismit, R.A. Kozlowski, G. and Kazimierczuk, M.K. IEEE Transactions on Applied Superconductivity 54 639 (2006).Google Scholar
20 Kleismit, R.A. Kozlowski, G. Biggers, R.R. Maartense, I. Kazimierczuk, M.K. and Mast, D.B. IEEE Transactions on Applied Superconductivity 15 2915 (2005).Google Scholar
21 Booth, J.C. Vale, L.R. and Ono, R.H. Proceedings of MRS Symposium 603 253 (2000).Google Scholar
22 Janezic, M.D. Williams, D.F. Blaschke, V. Karamcheti, A. and Chang, C.S. IEEE Trans. MTT 51 132 (2003).Google Scholar
23 Subramanyam, G. Mathala, P. and Kanagala, S. Invited paper, in: Asia Pacific Microwave Conference, 2004.Google Scholar
24 Kleismit, R.A. Campbell, A.L. Kozlowski, G. Haugan, T.J. Biggers, R.R. Maartense, I. Hopkins, S.C. Barnes, P.L. and Peterson, T.L. Supercond. Sci. Technol. 21 035008 (2008).Google Scholar
25 Kozlowski, G. Kleismit, R. Boeckl, J. Campbell, A. Munbodh, K. Hopkins, S. Koziol, K. and Peterson, T. Physica E41 1539 (2009).Google Scholar
26 Ravindranathan, P. and Patil, K.C. J. Mater. Sci. 223 261 (1987).Google Scholar
27 Dias, A. Buono, V.T.L. Vilela, J. M. Andrade, M.S. and Lima, T.M. J. Mater. Sci. 32 4715 (1997).Google Scholar
28 Dias, A. Moreira, R.L. Mohallem, N.D.S. Vilela, J.M.C. and Andrade, M.S. J. Mater. Res. 13 223 (1998).Google Scholar
29 Hwang, Y. Materials Letters, 60 3277 (2006).Google Scholar
30 Peng, C.H. Wang, H.W. Kan, S.W. Shen, M.Z. Wei, Y.M. and Chen, S.Y. J. Magn. Magn. Mater. 284 113 (2004).Google Scholar