Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-26T09:04:17.690Z Has data issue: false hasContentIssue false

Microstructures of Microcrystalline Silicon Solar Cells Prepared by Very High Frequency Glow-Discharge

Published online by Cambridge University Press:  17 March 2011

J. Dubail
Affiliation:
Institut de Microtechnique (IMT), A.L. Breguet 2, Université de Neuchatel, CH-2000 Neuchatel, Switzerland
E. Vallat-Sauvain
Affiliation:
Institut de Microtechnique (IMT), A.L. Breguet 2, Université de Neuchatel, CH-2000 Neuchatel, Switzerland
J. Meier
Affiliation:
Institut de Microtechnique (IMT), A.L. Breguet 2, Université de Neuchatel, CH-2000 Neuchatel, Switzerland
S. Dubail
Affiliation:
Institut de Microtechnique (IMT), A.L. Breguet 2, Université de Neuchatel, CH-2000 Neuchatel, Switzerland
A. Shah
Affiliation:
Institut de Microtechnique (IMT), A.L. Breguet 2, Université de Neuchatel, CH-2000 Neuchatel, Switzerland
Get access

Abstract

The microstructure of two different νc-Si:H solar cells was studied by Transmission Electron Microcopy (TEM). At the micrometer scale, a difference in the grain structure is observed close to the ZnO substrate: cracks are found in the cell deposited with the higher silane concentration. Surprisingly, the cell with the cracks close to the transparent conductive oxide shows the largest VOC (530 mV) and FF (68%). These first studies reveal that microstructures of fully microcrystalline silicon devices may show a quite large variation with corresponding effects in solar cell performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Meier, J., Flückiger, R., Keppner, H., Shah, A., Appl. Phys. Lett. 65, p. 860 (1994).Google Scholar
[2] Meier, J., Dubail, S., Flückiger, R., Fischer, D., Keppner, H., Shah, A., Proc. of 1st WCPEC, p. 409, (1994).Google Scholar
[3] Meier, J., Vallat-Sauvain, E., Dubail, S., Kroll, U., Dubail, J., Golay, S., Feitknecht, L., Torres, P., Fay, S., Fischer, D. and Shah, A., to be publ. in Solar Energy Mat. and Solar Cells (presented at PVSEC-11, 1999).Google Scholar
[4] Vallat-Sauvain, E., Kroll, U., Meier, J., Shah, A., J. Appl. Phys. 87, p. 3137 (2000).Google Scholar
[5] Vallat-Sauvain, E., Kroll, U., Meier, J., Wyrsch, N. and Shah, A., to be publ. in J. Non-Cryst. Solids (presented at ICAMS 18, 1999).Google Scholar
[6] Yamamoto, H., Isomura, M., Kondo, M. and Matsuda, A., Techn. Digest of PVSEC-11, p. 231, (1999).Google Scholar
[7] Torres, P., Keppner, H., Flückiger, R., Meier, J., Shah, A., Proc. 12th EPVSEC, p. 132 (1994).Google Scholar
[8] Koh, J., Lee, Y., Fujwara, H., Wronski, C.R., Collings, R.W., Appl. Phys. Lett. 73, p. 1526 (1998).Google Scholar
[9] Curtins, H., Wyrsch, N., Shah, A., Electron. Lett. 23, p. 223 (1987).Google Scholar
[10] Benedict, J., Anderson, R. and Klepeis, S. J., Mat. Res. Soc. Symp. Proc. Vol. 254, pp. 121140 (1992).Google Scholar
[11] Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F. and Wagner, H., Phil. Mag. A 77(6), pp. 14471460, (1998).Google Scholar