Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-12T20:46:22.680Z Has data issue: false hasContentIssue false

Microstructures of Chemically Polymerized Ultrathin Polypyrrole Films

Published online by Cambridge University Press:  15 February 2011

Xi Chu
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Vivcent Chan
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Lanny D. Schmidt
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
William H. Smyrl
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

The microstructures of chemically polymerized polypyrrole 100 to 800 Å films were studied by transmission electron microscopy (TEM). The fibers are embedded in an amorphous matrix which forms a self-reinforced composite. The shape of the fibers ranged from thin rods to ellipsoids depending on the preparation conditions. The density and size of the fibers were affected by the polymerization time and the concentration ratio of pyrrole and oxidants. Polypyrrole fibers were aligned along the thin film plane and were randomly oriented in the plane. The two-dimensional orientation of the crystalline fibers produced strongly anisotropic electrical properties in the thin films. It has been found that by properly adjusting the polymerization condition, it is possible to obtain the polypyrrole conducting ultra thin films with improved mechanic and electric properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kanatzidls, M. G., C & EN News, 1990, pp 36.Google Scholar
2. Ito, M., Shioda, H. and Tanaka, J., J. Polymer Science 24, 147(1986).Google Scholar
3. Aldissi, M. and Armes, S. P., Progress in Organic Coating, 19, 21(1991).Google Scholar
4. Gamier, F., Tourillon, G., Barraud, J. Y. and Dexpert, H., J. Mat. Sci., 20, 2687(1985).Google Scholar
5. Geiss, R. H., Street, G. B., Volksen, W., and Economy, J., IBM J. Res. Dev. 27, 321(1983).Google Scholar
6. Buckley, L. J., Roylance, D. K., and Wnek, G. E., J. Polymer. Sci. 25, 2179(1987).Google Scholar
7. Yang, R., Evans, D. F., Christensen, L. and Hendrickson, W. A., J. Phys. Chem. 94, 6117(1990).Google Scholar
8. Yang, R., Naoi, K., Evans, D. F., Smyrl, W. H. and Hendrickson, W. A., Langmuir 7, 7(1991).CrossRefGoogle Scholar
9. Mo, Z., Lee, K. B., Moon, Y. B., Kobayashi, M., heeger, A. J., and Wudl, F., Maceomolecules, 18, 1972(1985).Google Scholar
10. Atanasoska, L., Naoi, L. K. and Smyrl, W. H., Chem. Mater., 4, 988(1992).Google Scholar
11. Walker, J., Buckley, L. J., Naval Air Development Center: Warminster, PA; NTIS AD-A188456.Google Scholar
12. Mitchell, G. R. and Geri, A., J. Phys. D: Appl. Phys., 20, 1346(1987).Google Scholar
13. Kaneto, K., Yoshino, K. and Inuishi, Y., Jpn. J. Appl. Phys., 21, L567(1982).Google Scholar
14. Gottesfeld, S., Uribe, F. A. and Armes, S. P., J. Electrochem. Soc., 139, L14(1992).Google Scholar
15. Point, J. J. and Villers, D., Polymer, 33, 2263(1992).Google Scholar
16. Lei, J., Cai, Z., and Martin, C. R., Synth. Met., 46, 53(1992).Google Scholar
17. Pfluger, P. and Street, G. B., J. Chem. Phys., 80, 544(1984).Google Scholar
18. Skotheim, T. A., Florit, M. I., Melo, A. and O'Grady, E., Phys. Rev. B, 30, 4846(1984).Google Scholar
19. Salaneck, W. R., Erlandsson, R., Prejza, J., Lundstrom, I. and Inganas, O., Synth. Met., 5, 125(1983).Google Scholar
20. Munstedt, H., Polymer, 29, 296(1988).Google Scholar
21. Chu, X., Chan, V., Schmidt, L.D., and Smyrl, W.H., Appl. Phys. Lett. (Submitted)Google Scholar