Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T06:41:02.903Z Has data issue: false hasContentIssue false

Microstructure Effects in Hot-wire Deposited Undoped Microcrystalline Silicon Films

Published online by Cambridge University Press:  01 February 2011

Wolfhard Beyer
Affiliation:
w.beyer@fz-juelich.de, Forschungszentrum Jülich GmbH, IEF5 Photovoltaik, Leo Brandt Strasse, Jülich, 52425, Germany, 492461612925, 492461613735
Reinhard Carius
Affiliation:
r.carius@fz-juelich.de, Forschungszentrum Jülich GmbH, IEF5 Photovoltaik, Leo Brandt Strasse, Jülich, 52425, Germany
Dorothea Lennartz
Affiliation:
d.lennartz@fz-juelich.de, Forschungszentrum Jülich GmbH, IEF5 Photovoltaik, Leo Brandt Strasse, Jülich, 52425, Germany
Lars Niessen
Affiliation:
l.niessen@fz-juelich.de, Forschungszentrum Jülich GmbH, IEF5 Photovoltaik, Leo Brandt Strasse, Jülich, 52425, Germany
Frank Pennartz
Affiliation:
f.pennartz@fz-juelich.de, Forschungszentrum Jülich GmbH, IEF5 Photovoltaik, Leo Brandt Strasse, Jülich, 52425, Germany
Get access

Abstract

The microstructure of hot-wire microcrystalline silicon films prepared at a wide range of deposition conditions was characterized by both the microstructure parameter from infrared absorption data (analyzing the Si-H stretching modes) and the effusion spectra of (low dose) implanted He and Ne. Parameter ranges leading to the growth of a dense material are identified. A (relatively) high silane flow at rather high filament temperature is found to result in a dense material at high deposition rate. The microstructure data obtained by the two microstructure characterization methods are found to be largely correlated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schroeder, B. Thin Solid Films 430 (2003) 1.Google Scholar
2. Ishibashi, K. Karasawa, M. Xu, G. Yokokawa, N., Ikemoto, M. Masuda, A. Matsumura, H. Thin Solid Films 430 (2003) 58.Google Scholar
3. Williamson, D.L. Marr, D.W.M. Iwaniczko, E. Nelson, B.P. Thin Solid Films 430 (2003) 192.Google Scholar
4. Mahan Raboisson, A.H., Willamson, D.L. Tsu, R. Solar Cells 21 (1987) 117.Google Scholar
5. Beyer, W. MRS Symp. Proc. 664 (2001) A9.2.1.Google Scholar
6. Beyer, W. Phys. Stat. Solidi C 1 (2004) 1144.Google Scholar
7. Beyer, W. Ghazala, M.S. Abo, MRS Symp. Proc. 507 (1998) 601.Google Scholar
8. Beyer, W. Herion, J. Wagner, H. Zastrow, U. Philos. Mag. B63 (1991) 269.Google Scholar
9. Beyer, W. Solar Energy Materials and Solar Cells 78 (2003) 23.Google Scholar
10. Klein, S. Finger, F. Carius, R. Stutzmann, M. J. Appl. Phys. 98 (2005) 024905.Google Scholar
11. Horbach, C. Beyer, W. Wagner, H. J. Non-Crystalline Solids 137-138 (1991) 661.Google Scholar
12. Mahan, A.H. Xu, Y. Williamson, D.L. Beyer, W. Perkins, J.D. Vanecek, M. Gedvillas, L.M. Nelson, B.P. J. Appl. Phys. 90 (2001) 5038.Google Scholar
13. Kondo, M. Fujiwara, H. Matsuda, A. Thin Solid Films 430 (2003) 130.Google Scholar
14. Wagner, H. Beyer, W. Solid State Communications 48 (1983) 585.Google Scholar