Skip to main content Accessibility help

Microstructure and properties of oxide ceramic-based nanocomposites with transition metal nanoparticles

  • T. Sekino (a1), S. Etoh (a1), Y.-H. Choa (a1) and K. Niihara (a1)


Transition metal particles dispersed oxide ceramic nanocomposites A12O3/Co and ZrO2/Ni, in which metal content is less than 20 vol%, have been fabricated by the reduction and sintering of composite powders. These powder mixtures were prepared by solution chemical processes to obtain suitable structure for ceramic/metal nanocomposites. Nickel or cobalt nitrate, as a source of metal dispersion, was dissolved into alcohol and mixed with alumina or zirconia powder. These powders were reduced by hydrogen and successively hot press sintered. Nanometer-sized Co or Ni particles were mainly dispersed at the matrix grainboundaries. Fracture strength was improved by dispersing metal particles due to microstructural refinement, whereas toughness was increased by incorporating large metals. Ferromagnetic responses with enhanced coercive force were also observed for these composites.



Hide All
Sekino, I. T., Nakahira, A., Nawa, M. and Niihara, K., J. Jpn. Powd. and Powd. Metal., 38, 326 (1991).
2. Sekino, T., Nakahira, A., Nawa, M. and Niihara, K., in Proc. Intl. Ceram. Conf. Australia 1992, (CSIRO Pub., Melbourne, Australia, 1992), p. 745.
3. Sekino, T. and Niihara, K., Nanostruct. Mater., 6, 663 (1995).
4. Sekino, T. and Niihara, K., J. Mater. Sci., 32, 3943 (1997).
5. Sekino, T., Nakahira, A., and Niihara, K., in Proc. 3rd IUMRS Intl. Conf. on Adv. Mater., (Elsevier Science B.V, Tokyo, Japan, 1993), p. 1513.
6. Niihara, K., Sekino, T. and Nakahira, A., in New Functionality Materials Vol.C, (Elsevier Science. B.V., Tokyo, Japan, 1993), p.751.
7. Sekino, T., Nakajima, T. and Niihara, K., Mater. Lett., 29, 165 (1996).
8. Sekino, T., Nakajima, T., Ueda, S. and Niihara, K., J. Am. Ceram. Soc., 80, 1139 (1997).
9. Nawa, M., Sekino, T. and Niihara, K., J. Mater. Sci., 29, 3185(1994).
10. Nawa, M., Yamazaki, K., Sekino, T., Niihara, K., J. Mat. Sci, 31, 2849 (1996).
11. Nawa, M., Nakamoto, S., Yamazaki, K., Sekino, T., Niihara, K., J. of Japan Soc. of Powd. and Powder Metall., 43, 415 (1996).
12. Grossmann, J., Rose, K., Sporn, D., in Electroceramics IV, vol.2, (Verlag der Augustinus Buchhandlung, Aachen, Germany, 1994), p. 1319.
13. Niihara, K., J. Ceram. Soc. of Jpn., 99, 974 (1991).
14. Garvie, R. C. and Swain, M. V., J. Mater. Sci., 20, 1193 (1985).
15. Daroczi, L., Beke, D.L., Posgay, G., Zhou, G.F. and Bakker, H., Nanostruct. Mater., 2, 515 (1993).
16. Ermakov, A.E., Ivanov, O.A., Shur, Ya. S., Grechishkin, R.M. and Ivanova, G.V., Fiz. Met. & Metalloved., 33, 558 (1972).
17. Chikazumi, S., Physics of Ferromagnetism -Magnetic Characteristics and Engineering Applications-, 1 st ed. (Syokabo, Tokyo, Japan, 1984), p. 213.
18. Kamel, R. and Reffat, A., Solid State Commun., 8, 821 (1970).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed