Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T13:02:04.868Z Has data issue: false hasContentIssue false

Microstructure and Electrical Properties of PbTe Based Films Prepared by Pulsed Laser Deposition

Published online by Cambridge University Press:  21 March 2011

Anne Dauscher
Affiliation:
Laboratoire de Physique des Matériaux, UMR 7556, Ecole des Mines, Parc de Saurupt, F-54042 Nancy, France
Bertrand Lenoir
Affiliation:
Laboratoire de Physique des Matériaux, UMR 7556, Ecole des Mines, Parc de Saurupt, F-54042 Nancy, France
Alexandre Jacquot
Affiliation:
Laboratoire de Physique des Matériaux, UMR 7556, Ecole des Mines, Parc de Saurupt, F-54042 Nancy, France
Christine Bellouard
Affiliation:
Laboratoire de Physique des Matériaux, UMR 7556, Ecole des Mines, Parc de Saurupt, F-54042 Nancy, France
Maria Dinescu
Affiliation:
NILRP, Laser Department, P.O. Box MG-16, RO-76900 Bucharest, Romania
Get access

Abstract

Lead telluride thin films have been grown on BaF2(111) substrates by pulsed laser deposition from a Nd:YAG laser (λ = 532 nm) at very low temperature (150°C). The chemical composition, the morphology and the crystallographic structure of the layers depend strongly on the deposition conditions. Post-annealing treatments of the films also affect their microstructure. Preliminary electrical properties, conducted in the temperature range of 5 to 350 K, revealed that all the samples were n-type with Hall mobility values greater than 104 cm2/V.s at low temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lead Chalcogenides: Physics and Applications”, ed. Khokhlov, D. (Gordon and Breach, New York, 2000).Google Scholar
2. Harman, T.C., Spears, D.L., and Manfra, M.J., J. Electron. Mater 25, 1121 (1996).Google Scholar
3. Harman, T.C., Spears, D.L., Calawa, D.R., Groves, S.H., and Walsh, M.P., Proc. 16th Inter. Conf. on Thermoelectrics, Dresden (Germany), (IEEE Service Center, Piscataway - NJ, USA, 1997), pp. 416423.Google Scholar
4. Beyer, H., Lambrecht, A., Nurnus, J., Böttner, H., Schumann, J., Heinrich, A., Schmitt, L., Blumers, M., and Völklein, F., Proc. 19th Inter. Conf. on Thermoelectrics, Cardiff (United Kingdom), (Babrow Press, Wales, UK, 2000) pp. 2836.Google Scholar
5. Pulsed Laser Deposition of Thin Films, (ed. Chrisey, D.B. and Kubler, G.K., Wiley, New York, 1994).Google Scholar
6. Dauscher, A., Thomy, A., and Scherrer, H., Thin Solid Films 280, 61 (1996).Google Scholar
7. Jacquot, A., Boffoué, M.O., Lenoir, B., and Dauscher, A., Appl. Surf. Sci. 156, 169 (2000).Google Scholar
8. Dauscher, A., Jacquot, A., Lenoir, B., Scherrer, H., Dinescu, M., and Stölzer, M., Proc. 19th Inter. Conf. on Thermoelectrics, Cardiff (United Kingdom), (Babrow Press, Wales, UK, 2000) pp.420423.Google Scholar
9. Sprinholz, G. and Bauer, G., J. Appl. Phys. 77, 540 (1995).Google Scholar
10. Beyer, H., Lambrecht, A., Nurnus, J., Böttner, H., Griessmann, H., Heinrich, A., Schmitt, L., Blumers, M., and Völklein, F., Proc. 18th Inter. Conf. on Thermoelectrics, Baltimore (USA), (IEEE Service Center, Piscataway - NJ, USA, 1999) pp.687695.Google Scholar
11. Teichert, C., Jamming, B., and Oswald, J., Surf. Sci. 454–456, 823 (2000).Google Scholar
12. Myers, J.H., Morriss, R.H., and Deck, R.J., J. Appl. Phys. 42, 5578 (1971).Google Scholar
13. Springholz, G., Bauer, G., and Ihninger, G., J. Crystal Growth 127, 302 (1993).Google Scholar