Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T12:30:37.704Z Has data issue: false hasContentIssue false

Microstructural Imaging of Localized Chemical Reactions using Valence Photoelectrons

Published online by Cambridge University Press:  21 February 2011

S. Liang
Affiliation:
Center for X-ray Lithography, University of Wisconsin - Madison, 3731 Schneider Dr., Stoughton, WI 53589
A.K. Ray-Chaudhuri
Affiliation:
Center for X-ray Lithography, University of Wisconsin - Madison, 3731 Schneider Dr., Stoughton, WI 53589
W. Ng
Affiliation:
Center for X-ray Lithography, University of Wisconsin - Madison, 3731 Schneider Dr., Stoughton, WI 53589
F. Cerrina
Affiliation:
Center for X-ray Lithography, University of Wisconsin - Madison, 3731 Schneider Dr., Stoughton, WI 53589
Get access

Abstract

We have utilized scanning soft X-ray photoelectron spectromicroscopy-MAXIMUM to investigate the microstructural evolution induced by localized corrosion in the Al-Cu-Si alloy thin films. We present energy-specific photoelectron micrographs showing the distribution of Cu-rich precipitates and corrosion products for the thin films after corrosion. Microspectroscopy performed across a corrosion site reveals that the O 2p valence band shifts in energy with location and the amount of shift can be related to the degree of corrosion. The photoelectron micrographs also show that the Cu-rich phase precipitates near the surface region and grows with annealing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Capasso, C., Ray-Chaudhuri, A., Ng, W., Liang, S., Cole, R., Wallace, J., and Cerrina, F., J. Vac. Sci. Technol., A9(3), 1248(1991).Google Scholar
2. Wolf, S., Silicon Processing for the VLSI Era, Vol. 2, (Lattice Press, Sunset Beach, CA), Chapt.3(1990).Google Scholar
3. Thomas, S. and Berg, H.M., IEEE Trans. Components, Hybrids, Manufact. Technol., 10, 252 (1987).Google Scholar
4. Scully, J.R., Peebles, D.E., Romig, A.D. Jr., Frear, D.R., and Hills, C.R., Metall. Trans., 23A, 2641(1992).CrossRefGoogle Scholar
5. Rogers, B.R. and Wilson, S.R., J. Vac. Sci. Technol., A9(3), 1616(1991).CrossRefGoogle Scholar
6. Brusic, V., Frankel, G.S., Hu, C.K., Plechaty, M.M., and Rush, B.M., Corrosion, 47(1), 35(1991).CrossRefGoogle Scholar
7. Sinclair, J.D., J. Electrochem. Soc., 135, 89C(1988).Google Scholar
8. Frear, D.R., Michael, J.R., Kim, C., Romig, A.D., and Morris, J.W., SPIE, 1596, 72(1991).Google Scholar
9. Liang, S., Ray-Chaudhuri, A.K., Ng, W., Singh, S., Welnak, J.T., and Cerrina, F., MRS Symp. Proc., 309, 449(1993).Google Scholar
10. Cooper, J.W., Phys. Rev., 128, 681(1962).Google Scholar
11. Castro, V. Di and Polzonetti, G., Surf. Sci., 186, 383(1987).CrossRefGoogle Scholar
12. Unpublished results on thin films of Cu.Google Scholar
13. Batra, I.P., J. Elect. Spect. Rel. Phen., 33, 175(1984).CrossRefGoogle Scholar
14. Brown, L.C., Scripta Metallurgica, 21, 693(1987).Google Scholar