Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-01T05:35:46.132Z Has data issue: false hasContentIssue false

Microstructural Evolution and Stress Relaxation in Sputtered Tungsten Films

Published online by Cambridge University Press:  21 February 2011

F. M. Ross
Affiliation:
Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720;
R. R. Kola
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
R. Hull
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
J. C. Bean
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
Get access

Abstract

We have investigated the relationship between microstructure and stress in very thin sputtered W films. We discuss features of the microstructure, in particular the presence of voids in compressively stressed films, in terms of the evolution of the structure from a metastable β-phase. By developing a novel specimen geometry for the transmission electron microscope (TEM), we present dynamic observations of the β-W→α-W transformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ross, F. M., Hull, R., Bahnck, D., Bean, J. C., Peticolas, L. J., Kola, R. R. and King, C. A., to appear in Evolution of Surface and Thin Film Microstructure, edited by Atwater, H. A., Chason, E., Grabow, M. and Lagally, M., Mat. Res. Soc. Proc. 280 (1993)Google Scholar
2 Thornton, J. A., J. Vac. Sci. and Tech. 11, 666 (1974)Google Scholar
3 Hoffman, D. W. and Thornton, J. A., Thin Solid Films 40, 355 (1977)CrossRefGoogle Scholar
4 Hoffman, D. W. and Thornton, J. A., Thin Solid Films 45, 387 (1977)Google Scholar
5 Thornton, J. A., J. Vac. Sci. and Tech. A 4, 3059 (1986)Google Scholar
6 Petroff, P., Sheng, T. T., Sinha, A. K., Rozgonyi, A. and Alexander, F. B., J. Appl. Phys. 44, 2545 (1973)CrossRefGoogle Scholar
7 Haghiri-Gosnet, A. M., Ladan, F. R., Mayeux, C., Launois, H. and Joncour, M. C., J. Vac. Sci. and Tech. A 7, 2663 (1989)Google Scholar
8 Kola, R. R., Celler, G. K., Frakoviak, J., Jurgensen, C. W. and Trimble, L. E., J. Vac. Sci. and Tech. B 9, 3301 (1991)Google Scholar
9 Vink, T. J., Walrave, W., Daams, J. L. C., Dirks, A. G., Somers, M. A. J. and van den Aker, K. J. A., J. Appl. Phys. 74, 988 (1993)CrossRefGoogle Scholar
10 Miiller, K.-H., Phys. Rev. B 35, 7906 (1987); J. Appl. Phys. 62, 1796 (1987)Google Scholar
11 Fang, C. C., Jones, F. and Prasad, V., J. Appl. Phys. 74, 4472 (1993)Google Scholar
12 Itoh, M., Hori, M. and Nadahara, S., J. Vac. Sci. and Tech. B 9, 149 (1991)Google Scholar
13 Collot, P., Agius, B., Estrache, P., Hugon, M. C., Froment, M., Bessot, J. and Y, Crassin, J. Vac. Sci. and Tech. A 6, 2319 (1988)Google Scholar
14 Christian, J. W., Phase Transformations in Metals and Alloys, Parti (Second Ed.), Pergamon Press, Oxford (1975)Google Scholar
15 Brandes, E. A., Smithells Metals Reference Book (Sixth Ed.), Butterworths, London (1983)Google Scholar