Skip to main content Accessibility help
×
Home

Microstructural Design by Controlled Crystallization of Metallic Glasses

  • Uwe Köster (a1) and Rainer Janlewing (a1)

Abstract

Nanocrystalline materials can be produced e.g. by high energy ball milling or vacuum condensation; these methods require powder compaction as a final step. In another route - the nano-crystallization - metallic glasses are used as precursors for nanocrystalline materials without any porosity. The conditions for achieving an ultra-fine grained material by crystallization are small growth, but large nucleation rates. Whereas in Fe-Ni-B glasses the finest microstructure is produced at annealing temperatures above the glass transition close to the maximum of the nucleation rate, in Zr-based metallic glasses nanocrystallization was found to proceed only at relatively low temperatures below the glass transition. The aim of this contribution is to study systematically the micromechanisms involved in the microstructural design.

Crystallization was studied in detail in Fe-Ni-B and Zr-based metallic glasses by means of TEM, X-ray diffraction and DSC. Nucleation and growth rates were estimated from crystallization statistics. By modeling the obtained time-dependent nucleation rates in the framework of diffusion controlled classical nucleation all relevant crystallization parameter could be derived. Using these data TTT-diagrams could be drawn and annealing conditions deducted, e.g. for the formation of a nanocrystalline alloy.

Isothermal DSC plots for polymorphic crystallization can only be explained with a very significant decrease in the growth rate at later stages. Such a decrease is assumed to result from stresses building up during crystallization beyond the percolation limit for the crystalline phase; under this condition stresses resulting from the volume change during crystallization cannot be compensated by viscous flow as in the case of isolated crystals in an amorphous matrix.

Copyright

References

Hide All
[1] Inoue, A., Acta Mater. 48 (2000), 279
[2] Köster, U., Meinhardt, J., Roos, S., Rüdiger, A., Mat. Sci. Forum 225–227 (1996), 311
[3] Köster, U., Meinhardt, J., Roos, S., Liebertz, H., Appl. Phys. Lett. 69 (1996), 179
[4] Scott, M., Crystallization, in: Amorphous Metallic Alloys, ed. Luborsky, F.E., Butterworths, London 1983, p. 114ff.;
[5] Köster, U., Micromechanisms and Kinetics of Crystallization below the Glass Transition Temperature, in: Dynamic Aspects of Structural Change in liquids and Glasses, eds. Angell, C.A., Goldstein, M., Anals of the New York Academy of Sciences, Vol. 484, New York 1986, p. 39ff.;
[6] Köster, U., Schünemann, U., Phase Transformations in Rapidly Solidified Alloys, in: Rapidly Solidified Alloys, ed. Liebermann, H.H., Marcel Dekker Inc., New York 1993, p. 303ff.;
[7] Gutzow, I., Toschev, S., in: Advances in Nucleation and Crystallization of Glasses, ed. Hench, L.L., American Ceramic Society, Columbus 1971, p. 10ff.;
[8] Kelton, K.F., Greer, A.L., Thompson, C.V., J. Chem. Phys. 79 (1983), 6261;
[9] Blanke, H., Köster, U., Crystallization Statistics in Metal-Metalloid Glasses, Rapidly Quenched Metals I, eds. Steeb, S., Warlimont, H., (North-Holland Publ., Amsterdam 1985), p. 227ff.;
[10] Köster, U., Micromechanism of Crystallization in Metallic Glasses, in: Phase Transformations in Crystalline and Amorphous Alloys, ed. Mordike, B.L., Deutsche Gesellschaft für Metallkunde, Oberursel 1983), p. 113ff.;
[11] Aaron, H.B., Fainstein, D., Kotler, G.R., J. Appl. Phys. 41 (1970), 4404;
[12] Ohlberg, S. M., Golob, H. R., Stickler, D. W., Crystal Nucleation by Glass in Glass Separation, Symp. Nucleation and Crystallization in Glasses and Melts, The American Ceramic Society, Columbus (Ohio) 1962, p. 55ff.;
[13] Ramsden, A. H., James, P. F., J. Mater. Sci. 19 (1984), 1406;
[14] Chou, C.-P., Turnbull, D., J.Non-Cryst. Solids 17 (1975), 169;
[15] Chen, H. S., Mater. Sci. Eng. 23 (1976), 151;
[16] Busch, R., Schneider, S., Peker, A., Johnson, W. L., Appl. Phys. Lett. 67 (1995), 1544;
[17] Schneider, S., Geyer, U., Thiyagarajan, P., Johnson, W. L., Mat. Sci. Forum 235–238 (1997), 337;
[18] Köster, U., Alves, H., Meinhardt, J., Nanocrystalline Materials by Crystallization of Metallic Glasses, in: Proc. IUMRS (Tokyo 1993): Advanced Materials '93, Trans. Mat. Res. Soc. Japan Vol. 16A (1994), p. 69ff.;
[19] Greer, A.L., Mater. Sci. Eng. A179/180 (1994), 41;
[20] Köster, U., Meinhardt, J., Mater. Sci. Eng. A178 (1994), 271;
[21] Janlewing, R., Simulation der Quasikristallbildung in metallenen Zr-Basis-Gläsern, Ph.D. thesis, Dortmund 2001, Berichte aus der Werkstofftechnik, Shaker Verlag, Aachen 2002;
[22] Köster, U., Zander, D., Janlewing, R., Mater. Sci. Forum 386–388 (2002), 89;
[23] Janlewing, R., Köster, U., Mater.Sci.Eng. 304–306 (2001), 833;
[24] Köster, U., Meinhardt, J., Mater. Sci. Eng. A178 (1994), 27;
[25] Meinhardt, J., Entmischung, , Nanokristallisation und Quasikristallbildung in Zr-Basis-Gläsern, VDI Fortschrittsberichte, Reihe 5, Nr. 475, VDI-Verlag, Düsseldorf 1997;
[26] Bakke, E., Busch, R., Johnson, W.L., Appl. Phys. Lett. 67 (1995), 3260;
[27] Eckert, J., Mattern, N., Zinkevitch, M., Seidel, M., Mater. Trans. JIM 39 (1998), 623;
[28] Murty, B.S., Ping, D.H., Hono, K., Inoue, A., Appl. Phys. Lett. 76 (2000), 55;
[29] Murty, B.S., Ping, D.H., Hono, K., Inoue, A., Acta Mater. 48 (2000), 3985;
[30] Murty, B.S., Hono, K., Mater. Sci. Eng. A312 (2001), 253;
[31] Köster, U., Meinhardt, J., Roos, S., Busch, R., Mater. Sci. Eng. A226–228 (1997), 995.

Microstructural Design by Controlled Crystallization of Metallic Glasses

  • Uwe Köster (a1) and Rainer Janlewing (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed