Skip to main content Accessibility help
×
Home

Microstructural Aspects of Nickel Silicide Formation in Evaporated Nickel-Silicon Multilayer Thin Films

  • Karen Holloway (a1) and Larry Clevenger (a1)

Abstract

The early stages of the nucleation and growth of nickel silicides in Ni-Si multilayers evaporated onto oxide-stripped <100> Si substrates and annealed at 150 °C have been studied by cross-section transmission electron microscopy (TEM). Observed differences in the interaction of evaporated Ni with amorphous silicon and single crystal <100> Si have been explained by thermodynamic modeling of the Ni-Si system. The as-deposited films show a 3 nm amorphous Ni-Si intermixed layer at all Ni-Si interfaces, including that with the single-crystal Si substrate. Crystalline Ni2Si formed in all annealed films, consuming the elemental Ni layers. The amorphous alloy layer grows concurrently with Ni2Si during the reaction with a-Si; however, there is no amorphous phase present at the Ni2Si - <100> Si interface. Thermodynamic calculations show that at 150 °C metastable equilibrium might be expected between a-Si, the amorphous phase, and Ni2Si; but not between Ni2Si, the amorphous phase, and crystalline Si. The composition of the amorphous phase is very close to a-Ni50Si50. After a 6 hour anneal at 150 °C, crystalline NiSi forms between the a-Si and the Ni2Si layers by crystallization of the amorphous phase. Further annealing is necessary to form NiSi at the <100> Si - Ni2Si interfaces.

Copyright

References

Hide All
1. Holloway, K., Sinclair, R., Nathan, M., J. Vac. Sci. Technol. A 7, 1479 (1989).
2. Herd, S., Tu, K.N., and Aln, K.Y., Appl. Phys. Lett. 42, 599 (1983).
3. Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1987).
4. Natan, M., J. Vac. Sci. Technol. B4, 1404 (1986).
5. Aboelfotoh, M.O., Tawancy, H.M., and d'Heurle, F.M., Appl. Phys. Lett. 50, 1453 (1987).
6. Nathan, M., J. Appl. Phys. 63, 5534 (1988).
7. Lur, W. and Chen, L.T., Appl. Phys. Lett. 54, 1217 (1989).
8. Herd, S.R. and Tu, K.N., private communication.
9. Ma, E., Meng, W.J., Johnson, W.L., Nicolet, M.-A. and Nathan, M., Appl. Phys. Lett. 53, 2033 (1988).
10. Clevenger, L.A. and Thompson, C.V., to be published in J. Appl. Phys.
11. Foil, H., Ho, P.S. and Tu, K.N., Phil Mag. A 45, 31 (1982).
12. Bravman, J.C. and Sinclair, R., J. Electron Microsc. Tech. 1, 53 (1984).
13. Holloway, K. and Sinclair, R., Mater. Res. Symp. Proc. 77, 357, (1986).
14. , Sabine an , Mey, Z. Metallkde. 77, 805 (1986).
15. Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M. and Jocobson, D.C., J. Appl. Phys. 57, 4208 (1984).
16. DeAvillez, R.R., Clevenger, L.A., Thompson, C.V., and Ma, E., unpublished.
17. Fan, J.C. and Anderson, C.H., J. Appl. Phys. 52, 4003 (1981).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed