Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-26T10:16:18.781Z Has data issue: false hasContentIssue false

Microstructural aspects of fracture in nanolayered TiAlCrN thin films

Published online by Cambridge University Press:  01 February 2011

A. E. Santana
Affiliation:
IPMC - Faculty of Basic Science, Swiss Federal Institute of Technology Lausanne (EPFL)
A. Karimi
Affiliation:
IPMC - Faculty of Basic Science, Swiss Federal Institute of Technology Lausanne (EPFL)
V. H. Derflinger
Affiliation:
Balzers Ltd., Iramali 18, 9496 Balzers, Liechtenstein
A. Schütze
Affiliation:
Balzers Ltd., Iramali 18, 9496 Balzers, Liechtenstein
Get access

Abstract

This paper studies the effects of bilayer thickness and chromium content on the microstructure and mechanical properties of nanolayered TiAlN/CrN thin films. By rotation of samples holder and control of targets activity, a variety of multilayers and chemically modulated thin films were grown on WC-Co substrates using cathodic arc PVD. Conventional and high resolution TEM showed that aluminum contributes to refinement of structure while chromium favors the formation of coarse columnar morphology. Consequently, TiAlN layers periodically interrupt the formation of columns in CrN layers in multilayer films, while in chemically modulated samples the columns are not interrupted leading thus to the formation of strongly columnar films. Both Cr content and bilayer thickness contribute to hardness enhancement. Effect of Cr arises from the formation of hard fcc-(CrAl)N phase to the detriment of softer wurtzite-like hcp-AlN. The contribution of bilayer thickness is explained by the grain refinement based on Hall-Petch effect and the formation of highly stressed columnar structures with (111) preferred orientation. Such structural modifications strongly influence crack modes and morphologies as observed using AFM and FIB cross-section of indents. Thin bilayer films exhibit well-organized straight cracks parallel to the contact edge between indenter and film, while large bilayer films show a network of discontinuous irregular mud cracks attributed to grain boundary sliding. Refinement of structure favours crack meandering and branching that prevents the propagation of large cracks with more dramatic effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. PalDey, S., Deevi, S.C., Mat. Sci. Eng. A342, 5879 (2003).Google Scholar
2. Holubar, P., Jilek, M., Sima, M., Surf. Coat. Technol 133–134, 2534 (2000).Google Scholar
3. Prengel, H.G., Jindal, P.C., Wendt, K.H. et al., Surf. Coat. Technol 139, 2534 (2001).Google Scholar
4. Karimi, A., Bethmont, D., Wang, Y., Mat. Res. Soc. Symp. Proc. Vol. 695, 335340(2002)Google Scholar
5. Veprek, S., J. Vac. Sci. Technol. A 17(5), 24012420 (1999).Google Scholar
6. Münz, W.-D., MRS – Bulletin, Vol. 28, No. 3, 173179 (2003).Google Scholar
7. Luo, Q., Rainforth, W.R., Münz, W.D., Scripta Mater. 45, 399404 (2001).Google Scholar
8. Andersen, K.N., Bienk, E.J., et al, Bottiger, J., Surf. Coat. Technol. 123, 219226 (2000).Google Scholar
9. Veprek, S., J. Vac. Sci. Technol. A17(5), 2402420 (1999).Google Scholar
10. Yashar, Ph.C., Sproul, W.D., Vacuum 55, 179190 (1999).Google Scholar
11. Holleck, H., Schier, V., Surf. Coat. Technol. 76–77, 328336 (1995).Google Scholar
12. Artz, E., Acta Mater. Vol. 46, No. 16, 56115626 (1988).Google Scholar
13. Fu, H.H., Beson, D.J., Meyers, M.A., Acta Mater. 49, 25672582 (2001).Google Scholar
14. Geisler, H., Schweitz, K.O., Chevallier, J., Bottiger, J., Samwer, K., Phil. Mag. A 79(2), 485 (1999)Google Scholar
15. Drouhin, O.D., Santana, A.E., Karimi, A., Derflinger, V.H., Schutze, A., Surf. Coat. Technol. 163–164, 260266 (2003).Google Scholar
16. Ikeda, T. and Satoh, H., Thin solid Films, 195, 99 (1990).Google Scholar
17. Zhou, M., M;akino, Y., Nose, M., Nogi, K., Thin Solid Films, 339, 203 (1999).Google Scholar
18. Clemence, B.M., Kung, H., Barnett, S.A., MRS – Bulletin 24(2), 2025 (1999).Google Scholar
19. Andeson, P.M., Li, C.. Nanostruct. Mater. 5, 349 (1995).Google Scholar
20. Lawn, B.R., Evans, A.G., Marshall, D.B., J. Am. Ceram. Soc. 63, 574581 (1980).Google Scholar