Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T15:32:58.145Z Has data issue: false hasContentIssue false

Microstructural and Mechanical Properties of 308 and 409 Stainless Steel Welded by GTAW Process

Published online by Cambridge University Press:  26 February 2014

R. Saldaña-Garcés
Affiliation:
Corporación Mexicana de Investigación en Materiales. Saltillo, Coahuila. México.rocio.saldana@comimsa.com
A. F. Miranda-Pérez
Affiliation:
Corporación Mexicana de Investigación en Materiales. Saltillo, Coahuila. México.argelia.miranda@comimsa.com
G. Y. Pérez-Medina
Affiliation:
Corporación Mexicana de Investigación en Materiales. Saltillo, Coahuila. México.gladysperez@comimsa.com
Y. N. Barrón-Vargas
Affiliation:
Corporación Mexicana de Investigación en Materiales. Saltillo, Coahuila. México.yessica.barron@comimsa.com
F. A. Reyes-Valdés
Affiliation:
Corporación Mexicana de Investigación en Materiales. Saltillo, Coahuila. México.areyes@comimsa.com
Get access

Abstract

Today, stainless steel is widely used in automotive industry due to its high impact resistance, corrosion resistance and light weight. This paper present the research carried out to study the differences between microstructure and mechanical properties of 409 and 308 stainless steel sheets, each joints by gas tungsten arc welding (GTAW). For each of weldments, detailed analysis was conducted on the chemical composition, microstructure characteristics and mechanical properties of base metal (BM), heat affected zone (HAZ) and fusion zone (FZ). Scanning electron microscopy (SEM) and optical microscopy were used to analyze microstructural changes and mechanical properties, including microhardness and tensile test. This study can be a practical guide in the selection of other materials in order to determine the important to use in structural automotive industry.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Oates, W.R Daltta, Welding handbook American Welding Society (1998).Google Scholar
Lakshminarayanan, A. K., Balasubramanian, V., Evaluation of microstructure and mechanical properties of laser beam welded AISI 409M grade ferritic stainless steel, Journal Iron Steel Res. Int., 19, 72 (2012).CrossRefGoogle Scholar
Lakshminarayanan, A. K., Balasubramanian, V., Sensitization resistance of friction stir welded AISI 409 M grade ferritic stainless steel joints, Int. J. Adv. Manuf. Technol., 59, 961 (2012).CrossRefGoogle Scholar
Lippold, J. C., Kotecki, D. J., Welding metallurgy and weldability of Stainless Steels, New Jersey (2005).Google Scholar
Mirshekari, G.R., Tavakoli, E., Atapour, M., Sadeghian, B., Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel, Materials and Design (2013).Google Scholar
Kumar, B. R., Sharma, S., Munda, P., Minz, R.K., Structure and microstructure evolution of a ternary Fe-Cr-Ni alloy akin to super martensitic stainless steel, Materials and Design, 50, 392 (2013).CrossRefGoogle Scholar
Daehee, O., Kyutae, H., Seunggab, H., Changhee, L., Effects of alloying elements on the thermal fatigue properties of the ferritic stainless steel weld HAZ, Proc. Eng., 10, 383 (2011).Google Scholar
Vitek, J. M., Dasgupta, A., David, S. A., Microstructural modification of austenitic stainless steels by rapid solidification, Met. Trans..,14A (1983).Google Scholar
David, S. A., Vitek, J. M., Alexander I, D. J., Embrittlement of austenitic stainless steel welds. J. Nondes. Eval., 15 (1996).CrossRefGoogle Scholar
Cui, Y., Lundin, C.D., Effect of microfissures on mechanical properties of 308L austenitic stainless steel weld metals, Journal of Materials Science, 40, 1281 (2005).CrossRefGoogle Scholar
Konosua, S., Mashiba, H., Takeshima, M., Ohtsuka, T., Effects of pretest aging on creep crack growth properties of type 308 austenitic stainless steel weld metals, Eng. Fail. Analysis, 8, 75 (2001).CrossRefGoogle Scholar
Taban, E., Kaluc, E., Dhooge, A., Hybrid (plasma + gas tungsten arc) weldability of modified 12% Cr ferritic stainless steels, Mat. Des, 30, 4236 (2009).CrossRefGoogle Scholar