Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T03:39:22.281Z Has data issue: false hasContentIssue false

Microscopic Nature of Nature Light Induced Defects

Published online by Cambridge University Press:  10 February 2011

R. Biswas
Affiliation:
Department of Physics and Astronomy, Microelectronics Research Center, and Ames Laboratory -USDOE, Iowa State University, Ames, IA 50011
B. C. Pana
Affiliation:
on leave from University of Science and Technology of China, Hefei, P. R., China
Get access

Abstract

Molecular dynamics simulations find light-induced metastable defects to be silicon dangling bonds accompanied by (Si-H)2 defect complexes that have two Si-H bonds. These complexes are formed by pairs of hydrogen breaking a silicon bond. This supports the model of Branz. These defects are the analogue of the H2* defect in c-Si and their energy correlates with the bond-angle strain. Several features of annealing including E-field induced effects are well accounted for by the (Si-H)2 defect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Staebler, D. L., and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2 Street, R. A., Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991).Google Scholar
3 Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B32, 23 (1985).Google Scholar
4 Yamasaki, S. and Isoya, J., J. Non-Cryst. Sol. 164–166, 169 (1993).Google Scholar
5 Dersch, H., Stuke, J., and Beichler, J., Appl. Phys. Lett. 38, 456 (1981).Google Scholar
6 Branz, H., Solid State Comm. 105/6, 387 (1998).Google Scholar
7 Masson, D. P., Ouhlal, A., Yelon, A., J. Non-Cryst. Sol. 151, 190 (1995).Google Scholar
8 Yiping, Z., Dianlin, Z., Guanglin, K., Guangqin, P., and Xianbo, L., Phys. Rev. Lett. 65, 558 (1995).Google Scholar
9 Fritzsche, H., Solid State Communications 94, 953 (1995).Google Scholar
10 Mott, N. F., Davis, E. A., and Street, R., Phil. Mag. 32, 961 (1975).Google Scholar
11 Darwich, R. et al. , Phil. Mag. B 72, 363 (1995).Google Scholar
12 Biswas, R., Li, Q., Pan, B. C., and Yoon, Y., Mat. Res. Soc. Symp. Proc. 467, 135 (1997); Phys. Rev. B 57, 2253 (1998).Google Scholar
13 Hata, N., Kamei, T., Okamoto, H., and Matsuda, A. Mat. Res. Soc. Symp. Proc. 467, 61 (1997).Google Scholar
14 Han, D. et al. , Mat. Res. Soc. Symp. Proc. 505, (1997)Google Scholar
15 Li, Q. and Biswas, R., Phys. Rev. B50, 18090 (1994).Google Scholar
16 Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
17 Tuttle, B. and Adams, J. B., Phys. Rev. B 56, 4565 (1997).Google Scholar
18 Zafar, S. and Schiff, E. A., Phys. Rev. B 40, 5235 (1989).Google Scholar
19 Chang, K. J. and Chadi, D. J., Phys. Rev. Lett. 62, 937 (1989).Google Scholar
20 Zhang, S. B., Jackson, W. B., and Chadi, D. J., Phys. Rev. Lett 65, 2575 (1990).Google Scholar
21 Holbech, J. D. et al. , Phys. Rev. Lett. 71, 875 (1993).Google Scholar
22 Lucovsky, G. and Yang, H., Mat. Res. Soc. Symp. Proc. 467, 31 (1997), and 507, (1998).Google Scholar
23 Biswas, R. and Pan, B.C., Appl. Phys. Lett. 72, 371 (1998).Google Scholar
24 VandeWalle, C., Phys. Rev. B 45, 4579 (1994).Google Scholar
25 Carlson, D. E. and Rajan, K., Appl. Phys. Lett. 70, 2168 (1997).Google Scholar