Skip to main content Accessibility help
×
Home

Microscopic Aspects Of Charge Transport In Hydrogenated Microcrystalline Silicon

  • Antonín Fejfar (a1), Tomáš Mates (a1), Christian Koch (a1), Bohuslav Rezek (a1), Vladimír Švřek (a1), Petr Fojtík (a1), Ha Stuchlíková (a1), Jiř́ Stuchlík (a1) and Jan Kočka (a2)...

Abstract

Charge transport in hydrogenated microcrystalline silicon (µc-Si:H) is determined by structure on several size scales: i) local atomic arrangement (<1 nm), ii) crystalline grains and their boundaries (1-10 nm), iii) grain aggregates or columns (0.1-1 µm) and finally iv) features comparable to layer thickness (0.1-10 µm). We first summarize our experimental results concerning these effects: differences of conductivities of grains and amorphous tissue measured locally by conductive AFM, transport anisotropy observed by comparing dark conductivity and ambipolar diffusion length parallel and perpendicular to the substrate, and finally thickness dependence of transport parameters (e.g. dark conductivity activation energy and prefactor). Most of these phenomena can be described by using a novel model of the µc-Si:H growth leading to a structure known as Voronoi adjacency network. The model is based on the nearest neighbor constrained growth. To our knowledge, the Voronoi structure is the first structural model able to predict structure and transport properties of the µc-Si:H and it may become a basis for the future predictive model of µc-Si:H based solar cells.

Copyright

References

Hide All
1. Kočka, J., Fejfar, A., Vorlíček, V., Stuchlíková, H., and Stuchlík, J., in Amorphous and Heterogeneous Silicon Thin Films: Fundamentals to Devices - 1999, edited by Branz, H.M., Collins, R.W., Okamoto, H., Guha, S., and Schropp, R. (Mater. Res. Soc. Proc. 557, Materials Research Society, Warrendale 1999), pp. 483494.
2. Kočka, J., Stuchlíková, H., Stuchlík, J., Rezek, B., Švrček, V., Fojtík, P., Pelant, I., and Fejfar, A., in Polycrystalline Semiconductors VI - Bulk Materials, Thin Films and Devices, edited by Bonnaud, O., Mohammed-Brahim, T., Strunk, H.P., and Werner, J.H., Solid State Phenomena Series (Scitech Publ., Uettikon am See, Switzerland, 2001), in press.
3. Rezek, B., Stuchlík, J., Fejfar, A., and Kočka, J.: Appl. Phys. Lett. 74, 1475 (1999).
4. Fejfar, A., Rezek, B., Knápek, P., Stuchlík, J., and Kočka, J., J. Non-Crystalline Solids 266–269, 309 (2000).
5. Švrček, V., Pelant, I., Kočka, J., Fojtík, P., Rezek, B., Stuchlíková, H., Fejfar, A., Stuchlík, J., Poruba, A., and Toušek, J., J. Appl. Phys. 89, 1800 (2001).
6. Poruba, A., Fejfar, A., Remeš, Z., Špringer, J., Van[notdef]ček, M., Kočka, J., Meier, J., Torres, P., and Shah, A., J. Appl. Phys. 88, 148 (2000).10.1063/1.373635
7. Okabe, A., Boots, B., and Sugihara, K., Spatial Tessellations: Concepts and Applications of Voronoi diagrams, J. Wiley & Sons, New York, 2000.
8. Fujiwara, H., Kondo, M., Matsuda, A., Phys. Rev. B63, 115306 (2001).
9. Berg, M. de, Kreveld, M. van, Overmars, M., and Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, Springer Verlag, Berlin, 2000.
10. Guibas, L., and Stolfi, J., ACM Transactions on Graphics, 4, 74 (1985).
11. Yoshida, K., Philosophical Magazine B53, 55 (1986).
12. Nagaya, T., and Ishibashi, Y., Jpn. J. Appl. Phys. 37, 157 (1998).
13. Finger, F., Müller, J., Malter, C., Carius, R., Wagner, H., J. Non-Crystalline Solids 266-269, 511 (2000).

Microscopic Aspects Of Charge Transport In Hydrogenated Microcrystalline Silicon

  • Antonín Fejfar (a1), Tomáš Mates (a1), Christian Koch (a1), Bohuslav Rezek (a1), Vladimír Švřek (a1), Petr Fojtík (a1), Ha Stuchlíková (a1), Jiř́ Stuchlík (a1) and Jan Kočka (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed