Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T05:12:28.228Z Has data issue: false hasContentIssue false

Microrheology study of semidiluted deoxyribonucleic acid solutions

Published online by Cambridge University Press:  01 February 2011

F. Carvajal
Affiliation:
Departamenteo de Ingeniería Química, Universidad de Guadalajara, M. García Barragán 1451, Guadalalajara, Jal. 44430, México
J. G. Alvarez
Affiliation:
Departamenteo de Ingeniería Química, Universidad de Guadalajara, M. García Barragán 1451, Guadalalajara, Jal. 44430, México
E.R. Macías
Affiliation:
Departamenteo de Ingeniería Química, Universidad de Guadalajara, M. García Barragán 1451, Guadalalajara, Jal. 44430, México
V.V.A. Fernández
Affiliation:
Departamento de Ciencias Tecnológicas, Universidad de Guadalajara, Av. Universidad # 1115, Ocotlán, Jal. 47810, México
E. Robles-Avila
Affiliation:
Departamento de Investigación en Polimeros y Materiales, Universidad de Sonora, Apdo. Postal # 130, Hermosillo, Sonora 83000, México
R. Gámez-Corrales
Affiliation:
Departamento de Física, Universidad de Sonora, Apdo. Postal # 130, Hermosillo, Sonora 83000, México
J.F.A. Soltero
Affiliation:
Departamenteo de Ingeniería Química, Universidad de Guadalajara, M. García Barragán 1451, Guadalalajara, Jal. 44430, México
Get access

Abstract

Linear rheological behavior and Microrheology measurements of sodium salt calf-thymus DNA aqueous solutions as a function of concentration are reported here. The microrheological behavior was obtained by a combination of experimental techniques: mechanical Rheometry and Dynamic light scattering (DLS). The viscoelastic properties of DNA in water as a function of concentration were performed at 20 °C and rheological and microrhelogical curves were performed. The result indicated that for concentrations lower than the entanglement concentration (Ce) the system exhibits a predominantly viscous behavior, whereas for higher concentrations exhibits a predominantly elastic behavior. The plateau modulus (G0) and the zero complex viscosity () follow a power law concentration dependence of the form: and , respectively The microrheology results overlap perfectly in a single line with the mechanical rheology results, extending the time resolution to faster breathing modes

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Marko, J.F., Phys. Rev. E. 55, 1758 (1997).Google Scholar
2. Mason, T.G., Dhople, A., Wirtz, D., Macromolecules, 31, 3600 (1998).Google Scholar
3. Gardlík, R., Pálffy, R., Hodosy, J., Lukács, J., Turna, J., Celec, P., Med Sci Monit. 11, 110 (2005).Google Scholar
4. Granek, R., Cates, M.E., J. Chem. Phys. 96, 4758 (1992).Google Scholar
5. Soltero, J.F.A., Alvarez-Ramirez, J.G., Fernandez, V.V.A., Tepale, N., Bautista, F., Macias, E.R., Perez-Lopez, J.H., Shulz, P.C., Manero, O., Solans, C., Puig, J.E., J. Colloid Interface Sci. 312, 130(2007).Google Scholar
6. Puig, J.E., Bautista, F., Soltero, J.F.A., Manero, O., in Giant Micelles. Properties and Applications, Edited by R., Zana, E.W., Kaler, (Dekker, Boca Raton, FL, 2007) p.60.Google Scholar
7. Soltero, J.F.A., Puig, J.E., Manero, O., Langmuir 12, 2654(1996)Google Scholar
8. Rehage, H., Hoffmann, H., J Physical and Chemistry 92, 4712(1988)Google Scholar
9. Shikata, T., Hirata, H., Takatori, E., Ozaki, K., J Non-Newtonian Fluid Mech. 28, 171(1988)Google Scholar
10. Raspaud, E., Lairez, D., Adam, M., Macromolecules 28, 927 (1995).Google Scholar