Skip to main content Accessibility help

Micro-Raman Study of Self-Assembled Nanostructures: (1−x)PZN:xPT Solid Solution

  • S. Gupta (a1), R. S. Katiyar (a1), R. Guo (a2) and A. S. Bhalla (a2)


Relaxor ferroelectrics are one of the important classes of self-assembled nanostructure composite materials. Interesting features associated with the nanoregions give rise to the most interesting device related characteristics and unusual properties in these materials. Besides, they possess the largest property coefficients by themselves or when modified with lead titanate (PT). In this report, a detailed temperature dependent study has been carried out on (1-x)PZN-xPT relaxors with compositions x = 0.05 and 0.085 using polarized Raman scattering under optical and E-field variables and inferred the structure-property relations in order to obtain information to characterize the material for matching the application criteria. In addition, phase transitions associated with the relaxors have also been investigated to understand the polarization mechanism(s) for the unpoled and poled specimens.



Hide All
1. Smolensky, G. A. et al., Ferroelectrics and Related Materials (Gordon and Breach, New York, 1984).
2. Cross, L. E., Ferroelectrics 76, 241 (1987).
3. Gupta, S., Katiyar, R. S. and Bhalla, A. S., Mater. Res. Symp. Proc. 457, 145 (1999).
4. Vughmeister, B. E. and Rabitz, H., Physical Rev. B 57, 1 (1998).
5. Bums, G. and Dacol, F. H., Ferroelectrics 104, 25 (1990).
6. Mathan, N. de, Husson, E., Galvarin, G., Gavarri, J. R., Hewat, A. W., and Morell, A., J. Phys.: Condens. Matter 3, 8159 (1991).
7. Westphal, V., Kleemann, W., and Glinchuk, M. D., Phys. Rev. Lett. 68, 847 (1992).
8. Sommer, R., Yushin, N. K., and Klink, J. J. Van der, Phys. Rev. B 48, 13 230 (1993).
9.For review pl. see Cheng, Z. Y. et al., Phys. Rev. B 57, 8166 (1998).
10. Khuchua, N. P., Bokov, V. A., and Myl'nikova, I. E., Sov. Phys.-Solid State 10, 192 (1965) and references therein.
11. Yokomizo, Y., Takahashi, T., and Nomura, S., Ferroelectrics 22, S63 (1979).
12.Powder Diffraction File, Card No. 22–663. International Center for Diffraction Data, Newtowne Square, PA, 1991.
13. Kuwata, J., Uchino, K., and Nomura, S., Ferroelectrics 37, 863 (1981).
14. Nomura, S., Takahashi, T., and Yokomizo, Y., J.Phys. Soc. Japan 27, 262 (1969).
15. Kuwata, J., Uchino, K., and Nomura, S., Jpn. J Appl. Phys. 21, 1298 (1952).
16. Park, S.-E. and Shrout, T. R., J.Appl. Phys. 82, 1804 (1997).
17. Lin, S.-F., Park, S.-E., Shrout, T. R., and Cross, L. E., J. Appl. Phys. S5, 2810 (1999).
18. Siny, I., Lushnikov, S. and Katiyar, R. S. Phys. Rev. B 56, 7962 (1997).
19.For review pl. see Gupta, S., Katiyar, R. S. and Bhalla, A. S., Integrated Ferroleectrics (1999) (in Press).
20. Nomura, S., and Arima, H., Jpn.J.Appl. Phys. 11, 358 (1972).
21. Paik, D.-S., Park, S.-E., Wada, S., Liu, S.-F. and Shrout, T. R., J. Appl. Phys. S5, 1080 (1999).
22. Husson, E., Abello, L. and Morell, A., Mater. Res. Bull. 25, 539 (1990).
23. Tu, C.-S., Chao, F.-C., Yeh, C.-H., Tsai, C.-L. and Schmidt, V. H., Phys. Rev. B 60, 6348 (1999).
24. Lines, M. E. and Glass, A. M., in Principles and Applications of Ferroelectrics and Related Materials. (Oxford University Press, London 1977).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed