Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-23T07:17:48.491Z Has data issue: false hasContentIssue false

Microprobe Analysis of Nanophase Metal-Oxides using Inelastic Light Scattering

Published online by Cambridge University Press:  28 February 2011

J. C. Parker
Affiliation:
Nanophase Technologies Corporation8205 S. Cass Avenue, Suite 105, Darien, IL 60559
R. W. Siegel
Affiliation:
Argonne National Laboratory, Materials Science Division 9700 South Cass Avenue, Argonne, Illinois 60439 USA
Get access

Abstract

Nanophase TiO2 and ZnO were investigated with a Raman microprobe in order to determine the spatial variations in material composition, oxygen stoichiometry, and phase. Calibration of the oxygen stoichiometry of nanophase TiO2 was determined through a combination of Raman scattering and thermogravimetric analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., Goddard, W. A. III, Kaldor, A., Louie, S. G., Moskovits, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F., and Wang, Y., J. Mater. Res. 4, 704 (1989).CrossRefGoogle Scholar
2. Kear, B. H., Cross, L. E., Keem, J. E., Siegel, R. W., Spaepen, F., Taylor, K. C., Thomas, E. L., and Tu, K-N., Research Opportunities for Materials with Ultrafine Microstructures, NMAB-454 (National Academy Press, Washington, DC, 1989).Google Scholar
3. Siegel, R. W., Ramasamy, S., Hahn, H., Li, Z., Lu, T., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
4. Mayo, M.J., Siegel, R.W., Narayanasamy, A., Nix, W.D., J. Mat. Res. 5, 1073 (1990).CrossRefGoogle Scholar
5. Logas, J.L., Höfler, H.J., Hahn, H., and Averback, R.S., Mat. Res. Soc. Symp. Proc. 196 (1990)Google Scholar
6. Eastman, J. A., Liao, Y. X., Narayanasamy, A., and Siegel, R. W., Mater. Res. Soc. Symp. Proc. 155, 255 (1989).Google Scholar
7. Averback, R. S., Hahn, H., Höfler, H. J., Logas, J. L., and Shen, T. C., Mater. Res. Soc. Symp. Proc. 153, 3 (1989).CrossRefGoogle Scholar
8. Hahn, H., Eastman, J.A., and Siegel, R.W., Cer. Trans. 1B, 1115 (1988).Google Scholar
9. Siegel, R. W. and Eastman, J. A., Mater. Res. Soc. Symp. Proc. 132, 3 (1989).Google Scholar
10. Echeverria, L. M., Ceramics Transactions “Ceramic Powder Science III” vol. 12, pp. 649Google Scholar
11. Gardos, M.N., Mater. Res. Soc. Symp. Proc. 140, 325 (1989).Google Scholar
12. Breckenridge, R. G. and Hossler, W. R., Phys. Rev. 91, 793 (1953).CrossRefGoogle Scholar
13. Cornilsen, B.C., Funkenbusch, E.F., Clarke, P., Singh, P., and Lorprayoon, V., Mater. Sci. Res. 15, 239 (1983).Google Scholar
14. Parker, J.C. and Siegel, R.W., J. Mater. Res. 5, 1246 (1990).Google Scholar
15. Parker, J.C. and Siegel, R.W., Appl. Phys. Lett. 57, 943 (1990).CrossRefGoogle Scholar
16. Campbell, I. H. and Fauchet, P. M., Solid State Commun. 58, 739 (1986) andGoogle Scholar
Richter, H., Wang, Z. P., and Ley, L., Solid State Commun. 39, 625 (1981).CrossRefGoogle Scholar
17. Mavi, H. S., Shukla, A. K., Abbi, S. C., and Jain, K. P., J. Appl. Phys. 66, 5322 (1989).CrossRefGoogle Scholar
18. Melendres, C. A., Narayanasamy, A., Maroni, V. A., and Siegel, R.W., J. Mater. Res. 4, 1246 (1989).Google Scholar
19. Capwell, R. J., Spagnolo, F., and DeSessa, M. A., Appl. Spec. 26, 537 (1972).Google Scholar