Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T22:43:05.353Z Has data issue: false hasContentIssue false

Micro-photoluminescence studies of excitonic and multiexcitonic states of quantum dot-like localization centers in InGaN/GaN structures

Published online by Cambridge University Press:  01 February 2011

K. Sebald
Affiliation:
Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee, 28359 Bremen, Germany
H. Lohmeyer
Affiliation:
Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee, 28359 Bremen, Germany
J. Gutowski
Affiliation:
Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee, 28359 Bremen, Germany
S. Einfeldt
Affiliation:
Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee, 28359 Bremen, Germany
C. Roder
Affiliation:
Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee, 28359 Bremen, Germany
D. Hommel
Affiliation:
Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee, 28359 Bremen, Germany
Get access

Abstract

We present micro-photoluminescence measurements on unstructured InGaN/GaN quantum well samples. Single sharp emission lines were observed and their optical properties were studied as a function of temperature and excitation density. The experimental findings such as the independence of their spectral position on the excitation density and the observation of binding and antibinding multiexcitonic states give clear evidence for the existence of strong localization centers in the InGaN quantum well, which exhibit the same characteristics as they are known for quantum dot structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krestnikov, I. L., Ledentsov, N. N., Hoffmann, A., Bimberg, D., Sakharov, A. V., Lundin, W. V., Tsatsul'nikov, A. F., Usikov, A. S., Alferov, Zh. I., Musikhin, Yu. G. and Gerthsen, D., Phys. Rev. B 66, 155310 (2002).Google Scholar
2. Gerthsen, D., Neubauer, B., Rosenauer, A., Stephan, T., Kalt, H., Schön, O. and Heuken, M., Appl. Phys. Lett. 79, 2552 (2001).Google Scholar
3. Chichibu, S., Sota, T., Wada, K. and Nakamura, S., J. Vac. Sci. Technol. B 16, 2204 (1998).Google Scholar
4. Schömig, H., Halm, S., Forchel, A., Bacher, G., Off, J., and Scholz, F., Phys. Rev. Lett. 92, 106802 (2004).Google Scholar
5. Tachibana, K., Someya, T., Arakawa, Y., Werner, R. and Forchel, A., Appl. Phys. Lett. 75, 2605 (1999).Google Scholar
6. Moriwaki, O., Someya, T., Tachibana, T., Ishida, S. and Arakawa, Y., Appl. Phys. Lett. 76, 2361 (2000).Google Scholar
7. Oliver, R. A., Briggs, G. A. D., Kappers, M. J., Humphreys, C. J., Rice, J. H., Smith, J. D. and Taylor, R. A., Appl. Phys. Lett. 83, 755 (2003).Google Scholar
8. Seguin, R., Rodt, S., Strittmatter, A., Reiβmann, L., Bartel, T., Hoffmann, A., Bimberg, D., Hahn, E. and Gerthsen, D., Appl. Phys. Lett. 84, 4023 (2004).Google Scholar
9. Bötcher, T., Zellweger, Ch., Figge, S., Kröger, R., Petter, Ch., Bühlmann, H.-J., Ilegems, M., Ryder, P. L. and Hommel, D. phys. stat. sol. (a) 191, R3 (2002).Google Scholar
10. Rice, J. H., Robinson, J. W., Jarjour, A., Taylor, R. A., Oliver, R. A., Briggs, G. A. D., Kappers, M. J. and Humphreys, C. J., Appl. Phys. Lett. 84, 4110 (2004).Google Scholar
11. Rodt, S., Heitz, R., Schliwa, A., Sellin, R. L., Guffarth, F. and Bimberg, D., Phys. Rev. B. 68, 035331 (2003).Google Scholar
12. Lohmeyer, H., Sebald, K., Gutowski, J., Einfeldt, S., Roder, C. and Hommel, D., International Workshop on Nitride Semiconductors, Pittsburgh (PA, USA) 2004, phys. stat. sol. (c), in print.Google Scholar