Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-27T00:11:28.076Z Has data issue: false hasContentIssue false

Micro-Photoluminescence from V-shape inverted pyramid in HVPE Grown GaN Film

Published online by Cambridge University Press:  01 February 2011

Chao-Kuei Lee
Affiliation:
Institute of Electro-Optical Engineering, National Chiao Tung University 1001 Ta Hsueh Road, Hsinchu, TAIWAN 300
Y-B Chen
Affiliation:
Institute of Electro-Optical Engineering, National Chiao Tung University 1001 Ta Hsueh Road, Hsinchu, TAIWAN 300
Shu-Chen Chang
Affiliation:
Institute of Electro-Optical Engineering, National Chiao Tung University 1001 Ta Hsueh Road, Hsinchu, TAIWAN 300
Ci-Ling Pan
Affiliation:
Institute of Electro-Optical Engineering, National Chiao Tung University 1001 Ta Hsueh Road, Hsinchu, TAIWAN 300
S. C. Wang
Affiliation:
Institute of Electro-Optical Engineering, National Chiao Tung University 1001 Ta Hsueh Road, Hsinchu, TAIWAN 300
Get access

Abstract

We report the room-temperature micro-luminescence images from V-shaped inverted pyramids in undoped GaN films grown on (0001) sapphire substrate by hybrid vapor phase epitaxy. As the excitation laser spot at 325 nm was translated from the surface toward the center of the inverted pyramid along its slope, the center wavelength of the PL peak shows a trend of monotonic red-shift of from 373.9 nm to 379.1 nm. This could be attributed to the 3-dimensional release of stress and associated decrease of build-in piezoelectric field in the V-defects. A distinct and strong emission at 386.7 nm was observed at the apex of the V-defect. This could be originated from the threading dislocation at the onset of the defect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, H., Senoh, M., Iwasa, N., and Nagahama, S., Appl. Phys. Lett. 67, 1868 (1995)Google Scholar
2. Nakamura, H., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 69, 1477 (1996)Google Scholar
3. Akasaki, I., Sota, S., Sakai, H., Tanaka, T., Koike, M., and Amano, H., Electron Lett. 32, 1105 (1996)Google Scholar
4. Nakamura, H., Senoh, M., Nagahama, S.-I., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Appl. Phys. Lett. 72, 211 (1998)Google Scholar
5. Jiang, H. X., Lin, J. Y., Zeng, K. C., and Yang, W., Appl. Phys. Lett. 75, 763 (1999)Google Scholar
6. Singh, R., Barrett, R. J., Gomes, J. J., Dabkowski, F. P., Moustakas, T. D., MRS International Journal of Nitride Semiconductor Research 3:(13) 16 (1998).Google Scholar
7. Wu, X. H., Elsass, C. R., Abare, A., Mack, M., Keller, S., Petroff, P. M., DenBaars, S. P., Speck, J. S., and Rosner, S. J., Appl. Phys. Lett. 72, 692 (1998)Google Scholar
8. Northrup, J. E., Romano, L. T., and Neugebauer, J., Appl. Phys. Lett. 74, 2319 (1999)Google Scholar
9. Cho, H. K., Lee, J. Y., Yang, G. M., and Kim, C. S., Appl. Phys. Lett. 79, 215 (2001)Google Scholar
10. Jeong, M. S., Kim, Y.-W., White, J. O., Suh, E.-K., Cheong, M. G., Kim, C. S., Hong, C.-H., and Lee, H. J., Appl. Phys. Lett. 79, 3440 (2001)Google Scholar
11. Fang, Huimei., Tsai, J. Y., Wang, Y. K., Chu, C. F., and Wang, S. C., Proceedings of SPIE, 3899, 79 (1999)Google Scholar