Skip to main content Accessibility help
×
Home

Micropatterned Vertically Aligned Carbon Nanotube Growth on a Si Surface or inside Trenches for field-emission devices

  • Jung Inn Sohn (a1), Seonghoon Lee (a1), Yoon-Ho Song (a2), Sung-Yool Choi (a2), Jin Ho Lee (a2) and Young-Il Kang (a2)...

Abstract

The good field-emission properties of carbon nanotubes coupled with their high mechanical strength, chemical stability, and high aspect ratio, make them ideal candidates for the construction of efficient and inexpensive field-emission electronic devices. The fabrication process reported here has considerable potential for use in the development of integrated radio frequency amplifiers or field emission-controllable cold electron guns for field emission displays. This fabrication process is compatible with currently used semiconductor processing technologies. Micropatterned vertically aligned carbon nanotubes were grown on planar Si surface or inside the trenches, using chemical vapor deposition, photolithography, pulsed-laser deposition, reactive ion etching, and the lift-off method. To control the field-emission current by a 3rd electrode, the gate electrode, we grew carbon nanotubes inside the trenches. This triode-type structure is the best to realize the gray-scale carbon nanotube field emission. This carbon nanotube fabrication process can be widely applied for the development of electronic devices using carbon nanotube field emitters as cold cathodes and could revolutionize the area of field-emitting electronic devices such as RF amplifiers and field emission displays.

Copyright

References

Hide All
1. Treachy, M.M., Ebbesen, T. W., and Gibson, J. M., Nature 381, 678 (1996).
2. Ruoff, R. S. and Lorents, D. C., Carbon 33, 925 (1995).
3. Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, (Imperial College Press, London, 1999), Chapt. 4.
4. Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., and Dresselhaus, M. S. Science 286, 1127 (1999).
5. Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., and Smalley, R. E., Science 269, 1550 (1995).
6. Choi, W. B., Chung, D. S., Kang, J. H., Kim, H. Y., Jin, Y. W., Han, I. T., Lee, Y. H., Jung, J. E., Lee, N. S., Park, G. S., and Kim, J. M., Appl. Phys. Lett. 75, 3129 (1999).
7. Tans, S. J., Verschueren, A.R.M., Dekker, C., Nature 393, 49 (1998).
8. Brodie, I., Int. J. Electron. 38, 541 (1995).
9. Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., Dai, H., Science 283, 512 (1999).
10. Sohn, J.-I., Lee, S.*, Song, Y.-H., Choi, S.-Y., Cho, K.-I., Nam, K.-S., Appl. Phys. Lett. 78, 901 (2001).
11. Spindt, C.A., Holland, C. E., Schwoebel, P. R., Brodie, I., Tech. Dig. of IVMC '97 200 (1997), Kyongju, Korea.
12. Zhu, W., Bower, C., Zhou, O., Kochanski, G., and Jin, S., Appl. Phys. Lett. 75, 873 (1999).
13. Suh, J.-S., Lee, J.-S., Appl. Phys. Lett. 75, 2047 (1999).
14. Rao, A. M., Jacques, D., Haddon, R. C., Zhu, W., Bower, C., Jin, S., Appl. Phys. Lett. 76, 3813 (2000).
15. Heer, W. A. de, Chatelain, A., and Ugarte, D., Science 270, 1179 (1995).
16. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegel, M. P., Provencio, P. N., Science 282, 110 (1998).
17. Sohn, J.-I., Choi, C.-J., Lee, S., Seong, T.-Y., Appl. Phys. Lett. 78, 3130 (2001).
18. Gaskell, D. R., Introduction to the Thermodynamics of Materials (Taylor & Francis, Washington, D.C. 3rd Ed. 1995).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed