Skip to main content Accessibility help
×
Home

Microchemistry of Proton-Irradiated Austenitic Alloys Under Conditions Relevant to Lwr Core Components

  • G. S. Was (a1), T. R. Allen (a2), J. T. Busby (a2), J. Gan (a2), D. Damcott (a2), D. Carter (a2), M. Atzmon (a2) and E. A. Kenik (a3)...

Abstract

Over 1200 measurements of grain boundary composition and microstructure have been made on 14 different austenitic Fe-Cr-Ni alloys following proton irradiation in the temperature range 200-600°C and in the dose range 0.1-3.0 dpa. Grain boundary composition measurements revealed that Cr depletes at grain boundaries, Ni enriches and Fe can either enrich or deplete depending on alloy composition. Analysis of temperature and composition dependence of RIS revealed that the magnitude and direction of grain boundary segregation depends on alloy composition because the value of migration enthalpy differs among the alloy constituents, and diffusivities of the alloy constituents are composition-dependent. The dose dependence of segregation revealed ordering in Ni-base alloys and temperature dependence was used to show that RIS occurs by vacancy exchange rather than an interstitial binding mechanism. The dependence of segregation on composition is consistent with all known, relevant neutron data.

Copyright

References

Hide All
1 Damcott, D., Cookson, J., Rotberg, V. and Was, G. S., Nucl. Instr. Meth. B 99, p.780, (1995).
2 Allen, T. R., Ph.D. Thesis, University of Michigan, 1997
3 Damcott, D., Allen, T. and Was, G. S., J. Nucl. Mater. 225, p.97, (1995).
4 Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E., and Weber, R. E., “Handbook of Auger Electron Spectroscopy, 2nd Edition,” Perkin-Elmer Corporation, Eden Prairie, MN.
5 Kenik, E. A., Scripta Metall. 21, p.811, (1987).
6 Cliff, G. and Lorimer, G. W.: Proc. Fifth European Congress on Electron Microscopy, p. 140, Institute of Physics, Bristol, 1972.
7 Was, G. S., Allen, T. R., Busby, J. T., Gan, J., Damcott, D., Carter, D., Atzmon, M. and Kenik, E. A., J. Nucl. Mater., in press.
8 Carter, R.D., Damcott, D.L., Atzmon, M., Was, G.S., Bruemmer, S.M., and Kenik, E. A., J. Nucl. Mater. 211, p.70, (1994).
9 Perks, J. M., Marwick, A.D., and English, C.A., Harwell Laboratory, Oxfordshire, UK, AERE R 12121, June 1986.
10 Allen, T., Busby, J. T., Was, G. S. and Kenik, E. A., J. Nucl. Mater. 255, p. 4458, (1998).
11 Allen, T., Was, G. S. and Kenik, E. A., J. Nucl. Mater. 244, p.278, (1997).
12 Allen, T. R. and Was, G. S., Proc. Mater. Res. Soc., Materials Research Society, Pittsburgh, vol. 373, p. 101, 1995.
13 Rothman, S.J., Nowicki, L.J., and Murch, G.E., Journal of Physics F: Metal Physics 10, p. 383 (1980).
14 Million, B., Ruzickova, J., and Vrestal, J., Materi. Sci. Engin. 72, p.85, (1985).
15 Cenedese, P., Bley, F., and Lefebvre, S., Acta Crystall. A40, p. 228, (1984).
16 Marwick, A. D., Piller, R. C., and Cranshaw, T. E., J. Phys F. Met. Phys. 17, p.37, (1987).
17 Marucco, A., Mat. Sci. Eng., A189, p. 267, (1994).
18 Dimitrov, C., Huguenin, D., Moser, P., and Dimitrov, O., J. Nucl. Mater. 174, p. 2234, (1990).
19 Wiedersich, H., Okamoto, P. R., and Lam, N. Q., J. Nucl.. Mater. 83, p.98, (1979).
20 Watanabe, S. and Takahashi, H., J. Nucl. Mater. 208, p.191, (1994).
21 Dumbill, S., Ph.D. Thesis, University of Birmingham (1992).
22 Garner, F. A. and Kumar, A. S., ASTM STP 955, Eds., Garner, F. A., Packan, N. H., and Kumar, A. S., American Society for Testing and Materials, Philadelphia 1987, p.289.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed