Skip to main content Accessibility help
×
Home

Mg-Ti: A Possible Biodegradable, Biocompatible, Mechanically Matched Material for Temporary Implants

  • Ilona Hoffmann (a1), Yang-Tse Cheng (a1), David A. Puleo (a2), Guangling Song (a3) and Richard A. Waldo (a3)...

Abstract

In recent years there has been a renewed interest in magnesium alloys for applications as temporary biomedical implants because magnesium is both biocompatible and biodegradable. However, the rapid corrosion rate of magnesium in physiological environments has prevented its successful use for temporary implants. Since alloying is one of the routes to slow down corrosion, we report in this publication our investigation of Mg-Ti alloys fabricated by high-energy ball milling as possible materials for biocompatible and biodegradable implants. Titanium was chosen mainly because of its proven biocompatibility and corrosion resistance. Corrosion tests carried out by immersing the Mg-Ti alloys in Hank’s Solution at 37°C showed significantly improved corrosion resistance of the alloy in comparison to pure magnesium. Thus, Mg-Ti alloys are promising new biodegradable and biocompatible materials for temporary implants.

Copyright

Corresponding author

References

Hide All
1. Park, J. and Lakes, R.S., Biomaterials – An Introduction, (Springer, 2007).
2. Song, G.-L., Corrosion Science 49, 16961701 (2007).
3. Zberg, B., Uggowitzer, P. J., and Loffler, J. F., Nature Materials 8, 887891 (2009).
4. Elin, R. J., American Journal of Clinical Pathology 102, 616622 (1994).
5. Shils, Maurice E., Olson, James A., and Shike, Moshe (Ed.), Modern Nutrition in Health and Disease, (Lea & Febiger, 1994).
6. Zreiqat, H., Howlett, C. R., Zannettino, A., Evans, P., Schulze-Tanzil, G., Knabe, C., and Shakibaei, M., Journal of Biomedical Materials Research 62, 175184 (2002).
7. Narayan, R. (ed), Biomedical Materials, (Springer, 2009).
8. Handbook of Chemistry and Physics, (2010–2011).
9. Cheng, Y.-T., Verbrugge, M. W., Balogh, M. P., Rodak, D. E., Lukitsch, M., US patent 7,651,732 (January 26, 2010).
10. Landolt-Bornstein, New Series IV/5.
11. Koch, C. (ed), Nanostructured Materials: Processing, Properties, and Applications (William Andrew, 2007).
12. Asano, K., Enoki, H., and Akiba, E., Journal of Alloys and Compounds 480, 558563 (2009).
13. Kalisvaart, W. P. and Notten, P. H. L., Journal of Materials Research 23, 21792187 (2008).
14. Liang, G. and Schulz, R., Journal of Materials Science 38, 11791184 (2003).
15. Maweja, K., Phasha, M., and van der Berg, N., Powder Technology 199, 256263 (2010).
16. Wilkes, D. M. J., Goodwin, P. S., WardClose, C. M., Bagnall, K., and Steeds, J., Materials Letters 27, 4752 (1996).
17. Benjamin, J. S., Metallurgical Transactions 1, 29432951 (1970).
18. Zidoune, M., Grosjean, M. H., Roue, L., Huot, J., and Schulz, R., Corrosion Science 46, 30413055 (2004).
19. Song, G.-L., Atrens, A., StJohn, D., Magnesium Technology, Hryn, John N. (ed.), 255-262 (2001).
20. Xu, Z., Song, G-L., and Haddad, D., Magnesium Technology, (2011) (accepted for publication).

Keywords

Mg-Ti: A Possible Biodegradable, Biocompatible, Mechanically Matched Material for Temporary Implants

  • Ilona Hoffmann (a1), Yang-Tse Cheng (a1), David A. Puleo (a2), Guangling Song (a3) and Richard A. Waldo (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed