Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T12:59:34.579Z Has data issue: false hasContentIssue false

Mg-Si-AI-O-N Glasses Prepared By Nitriding Cordierite Powders Derived from Polymer Precursors

Published online by Cambridge University Press:  25 February 2011

Richard M. Laine
Affiliation:
Departments of Materials Science and Engineering, andChemistry University of Michigan, Ann Arbor, MI 48109-2136
Clint R. Bickmore
Affiliation:
Departments of Materials Science and Engineering, andChemistry University of Michigan, Ann Arbor, MI 48109-2136
Kurt F. Waldner
Affiliation:
Departments of Materials Science and Engineering, andChemistry University of Michigan, Ann Arbor, MI 48109-2136
Brian L. Mueller
Affiliation:
Departments of Materials Science and Engineering, andChemistry University of Michigan, Ann Arbor, MI 48109-2136
Hal W. Estry
Affiliation:
Departments of Materials Science and Engineering, andChemistry University of Michigan, Ann Arbor, MI 48109-2136
Get access

Abstract

We have previously reported the synthesis of cordierite polymer precursors directly from MgO, SiO2 and alumina.1 Removal of organics at 400°C in air and/or in oxygen gave amorphous, atomically mixed, oxide powders with surface areas of 250-400 m2/g. It is possible to convert these high surface area oxide powders to Mg-Si-Al-O-N powders by heating in a flowing NH3 atmosphere. The effects of selected processing conditions on nitrogen incorporation, in a set of well defined oxide powders, were examined. The powders are nitrided in flowing NH3, at temperatures of 700-1200°C, to obtain N contents of up to 5 atomic percent.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, Z.-F., Hoppe, M. L., Rahn, J. A., Koo, S.-M. and Laine, R. M., in “Synthesis and Processing of Ceramics: Scientific Issues,” edited by Rhine, W. E., Shaw, T. M., Gottschall, R. J. and Chen, Y, (Mat. Res. Soc. Symp. Proc. 249, 1992) p. 8186.Google Scholar
2. Messier, D. R., “Army Oxynitride Glass Research,” Ceram. Bull. 6 8, 1931 (1989).Google Scholar
3. Messier, D. R., Gleisner, R. P. and Rich, R. E., “Yttrium-Silicon-Aluminum Oxynitride Glass Fibers,” J. Am. Ceram. Soc. 72, 2183 (1989).Google Scholar
4. Sakka, S., Kamiya, K. and Yoko, T., “Preparation and Properties of Ca-Al-Si-O-N Oxynitride Glasses,” J. Noncryst. Sol. 5 6, 147 (1983).Google Scholar
5. Loehman, R. E., “Oxynitride Glasses,” J. Noncryst. Solids (1980) 4 2, 433.Google Scholar
6. Yu, Y-F., Mah, T.-I., “Si-O-N Ceramics from Organosilicon Polymers,” in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., Ulrich, D. R..(Mat. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986) p. 559 and references therein.Google Scholar
7. Laine, R. M., Blum, Y D., Hamlin, R. D., Chow, A., “Organometallic Polymers as Precursors to Ceramic Materials: Silicon Nitride and Silicon Oxynitride” in Ultrastructure Prcessing of Ceramics. Glasses and Composites II, edited by Mackenzie, D. J and Ulrich, D. R., J. Wiley & Sons, N. Y (1988) p. 756.Google Scholar
8. Hackney, M. L. J., Interrante, L. V., Slack, G. A., Schields, P. J., “Organometallic Precursors to AlwSixNyCz Ceramics,” in Ultrastructure Processing of Ceramics. Glasses and Composites, edited by Mackenzie, D. J, Ulrich, D. R., J. Wiley & Sons, N. Y (1988) p. 99.Google Scholar
9. Soraru, G. D., Ravagni, A., Campostrini, R.. “Synthesis and Characterization of B'-SiAlON Ceramics from Organosilicon Polymers”, J. Am. Ceram. Soc. 74, 2220 (1989).Google Scholar
10. Preceding paper in this symposium.Google Scholar
11. Laine, R., Blohowiak, K., Robinson, T., Hoppe, M., Nardi, P., Kampf, J., Uhm, J., “Synthesis of Novel, Pentacoordinate Silicon Complexes from Si02 ,” Nature 35 3, 642644 (1991).Google Scholar
12. Laine, R. M., Youngdahl, K. A. and Nardi, P., U. S. Patent 5,099,052 (March 24, 1992).Google Scholar
13. a. Laine, R. M., Bickmore, C., Mueller, B. and Hinklin, T., unpublished work.Google Scholar
14. Jameel, N. S. and Thompson, D. P., “The Preparation of Nitrogen Glass-Ceramics in the Magnesium Sialon System,” in Special Ceramics 8; Taylor, and Popper, Eds., Proc. of the Brit. Ceram. Soc., (1986) pp 95108.Google Scholar
15. Jack, K. H., “Sialon Glasses,” in Nitrogen Ceramics, edited by Riley, R. L., Noordhoff International, Reading, MA (1978) pp 257262.Google Scholar
16. Tien, T-Y, Petzow, G., Glackler, L. J., Weiss, J. “Phase Equilibrium Studies in Si3 N4 -Metal Oxide Systems,” in Progress in Nitrogen Ceramics. Martinus Nihoff Publ. (1983) p. 89.Google Scholar
17. Hayashi, T. and Tien, T.-Y, “Formation and Crystallization of Oxynitride Glasses in the System Si, Al, Mg/O, N,” Yogyo-Kyokai-Shi, 94, 54 (1986).Google Scholar
18. Sjoberg, J. and Pompe, R., “Nitridation of Amorphous Silica with Ammonia”, J. Am. Ceram. Soc. 75, 2189 (1992).Google Scholar
19. Kamiya, K., Ohya, M., Yoko, T., “Nitrogen-Containing SiO2Glass Fibers Prepared by Ammonolysis of Gels Made from Silicon Alkoxides”, J. Noncryst. Sol., 8 3, 208 (1986).Google Scholar