Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T09:43:15.980Z Has data issue: false hasContentIssue false

Metal-Organic Chemical Vapor Deposition Routes to Films of Transparent Conducting Oxides

Published online by Cambridge University Press:  10 February 2011

A. Wang
Affiliation:
Department of Chemistry, Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208, tjmarks@casbah.acns.nwu.edu
S. C. Cheng
Affiliation:
Department of Chemistry, Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208, tjmarks@casbah.acns.nwu.edu
J. A. Belot
Affiliation:
Department of Chemistry, Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208, tjmarks@casbah.acns.nwu.edu
R. J. Mcneely
Affiliation:
Department of Chemistry, Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208, tjmarks@casbah.acns.nwu.edu
J. Cheng
Affiliation:
Department of Chemistry, Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208, tjmarks@casbah.acns.nwu.edu
B. Marcordes
Affiliation:
Department of Chemistry, Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208, tjmarks@casbah.acns.nwu.edu
T. J. Marks
Affiliation:
Department of Chemistry, Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208, tjmarks@casbah.acns.nwu.edu
J. Y. Dai
Affiliation:
Department of Materials Science and Engineering, Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208
R.P.H. Chang
Affiliation:
Department of Materials Science and Engineering, Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208
J. L. Schindler
Affiliation:
Department of Electrical and Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208
M.P. Chudzik
Affiliation:
Department of Electrical and Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208
C. R. Kannewurf
Affiliation:
Department of Electrical and Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208
Get access

Abstract

This contribution reports the in situ growth of transparent, conducting GaxIn2-xO3 and ZnkIn2Ok+3 films by MOCVD (metal-organic chemical vapor deposition) techniques using In(dpm)3, Ga(dpm)3, and Zn(dpm)2 (dpm = dipivaloylmethanate) as volatile precursors. In the former series, film microstructure in the x = 0.4 – 1.0 range is predominantly cubic with 25° C electrical conductivities as high as 1300 S/cm (n-type; carrier density = 1.2 × 1020 cm−3, mobility = 68 cm2/Vs) and optical transparency in the visible region greater than that of ITO. In the latter series, films in the composition range K = 0.16 – 3.60 were studied; the microstructural systematics are rather complex. Electrical conductivities (25° C) as high as 1000 S/cm (n-type; carrier density = 3.7 × 1020 cm−3, mobility = 18.6 cm2/Vs) for K = 0.66 were measured. The optical transparency window is significantly broader than that of ITO.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jarzebski, Z. M., Phvs. Status Solidi A, 71, p. 13 (1982).Google Scholar
2. Granqvist, C. G., Appl. Phvs. A, 52, p. 83 (1991).Google Scholar
3. Phillips, J. M., Kwo, J., Thomas, G. A., Carter, S. A., Cava, R.J., Hou, S. Y., Krajewski, J. J. Jr, Marshall, J. H., Peck, W. F., Rapkine, D. H. and van Dover, R. B., Appl. Phvs. Lett. 65. p. 115 (1994).Google Scholar
4. Cava, R. J., Phillips, J. M., Kwo, J., Thomas, G. A., van Dover, R. B., Carter, S. A., Krajewski, J. J., Peck, W. F. Jr, Marshall, J. H. and Rapkine, D.H., Appl. Phys. Lett. 64, p. 2071 (1994).Google Scholar
5. Phillips, J. M., Cava, R.J., Thomas, G.A., Carter, S. A., Siegrist, T., Krajewski, J. J., Marshall, J. H., Peck, W. F. Jr, and Rapkine, D. H., Appl. Phys. Lett. 67, p. 2246 (1995).Google Scholar
6. Edwards, D. D., Folkins, P. E., and Mason, T. O., J.Amer. Cerarti. Soc., 80, p. 253 (1997).Google Scholar
7. Edwards, D. D., Mason, T.O., Goutenoire, F., and Peoppelmeier, K.R., Appl. Phvs. Lett., 70, p. 1706 (1997).Google Scholar
8. Moriga, T., Edwards, D. D., Mason, T.O., Polmer, G.B., Poeppelmeier, K.R., Schindler, J.L., Kannewurf, C. R., and Nakabayashi, I., J. Am. Ceram. Soc., in press.Google Scholar
9. Han, B., Neumayer, D. A., Schulz, D. L., Hinds, B. J., Marks, T. J., Zhang, H., and Dravid, V. P., Chem. Mater., 6, p. 18 (1994).Google Scholar
10. Hinds, B. H., McNeely, R. J., Studebaker, D. B., Marks, T. J., Hogan, T. P., Schindler, J. L., Kannewurf, C. R., Zhang, X. F., and Miller, D. J., J. Mater. Res., 12, p. 1214 (1997).Google Scholar
11. Kimizuka, N., Isobe, M., and Nakamura, M., J. Solid State Chem., 116, p. 170 (1994).Google Scholar
12. Cannard, P. J. and Tilley, R. J. D., J. Solid State Chem., 73, p. 418 (1988).Google Scholar
13. Wang, R., King, L. L. H., and Sleight, A. W., J. Mater. Res., 11, p. 1659 (1997).Google Scholar
14. Minami, T., Kokumu, T., and Takata, S., J. Vac. Sci. Technol. A, 14, p. 1704 (1996).Google Scholar