Skip to main content Accessibility help

Metal-Organic Chemical Vapor Deposition Routes to Films of Transparent Conducting Oxides

  • A. Wang (a1), S. C. Cheng (a1), J. A. Belot (a1), R. J. Mcneely (a1), J. Cheng (a1), B. Marcordes (a1), T. J. Marks (a1), J. Y. Dai (a2), R.P.H. Chang (a2), J. L. Schindler (a3), M.P. Chudzik (a3) and C. R. Kannewurf (a3)...


This contribution reports the in situ growth of transparent, conducting GaxIn2-xO3 and ZnkIn2Ok+3 films by MOCVD (metal-organic chemical vapor deposition) techniques using In(dpm)3, Ga(dpm)3, and Zn(dpm)2 (dpm = dipivaloylmethanate) as volatile precursors. In the former series, film microstructure in the x = 0.4 – 1.0 range is predominantly cubic with 25° C electrical conductivities as high as 1300 S/cm (n-type; carrier density = 1.2 × 1020 cm−3, mobility = 68 cm2/Vs) and optical transparency in the visible region greater than that of ITO. In the latter series, films in the composition range K = 0.16 – 3.60 were studied; the microstructural systematics are rather complex. Electrical conductivities (25° C) as high as 1000 S/cm (n-type; carrier density = 3.7 × 1020 cm−3, mobility = 18.6 cm2/Vs) for K = 0.66 were measured. The optical transparency window is significantly broader than that of ITO.



Hide All
1. Jarzebski, Z. M., Phvs. Status Solidi A, 71, p. 13 (1982).
2. Granqvist, C. G., Appl. Phvs. A, 52, p. 83 (1991).
3. Phillips, J. M., Kwo, J., Thomas, G. A., Carter, S. A., Cava, R.J., Hou, S. Y., Krajewski, J. J. Jr, Marshall, J. H., Peck, W. F., Rapkine, D. H. and van Dover, R. B., Appl. Phvs. Lett. 65. p. 115 (1994).
4. Cava, R. J., Phillips, J. M., Kwo, J., Thomas, G. A., van Dover, R. B., Carter, S. A., Krajewski, J. J., Peck, W. F. Jr, Marshall, J. H. and Rapkine, D.H., Appl. Phys. Lett. 64, p. 2071 (1994).
5. Phillips, J. M., Cava, R.J., Thomas, G.A., Carter, S. A., Siegrist, T., Krajewski, J. J., Marshall, J. H., Peck, W. F. Jr, and Rapkine, D. H., Appl. Phys. Lett. 67, p. 2246 (1995).
6. Edwards, D. D., Folkins, P. E., and Mason, T. O., J.Amer. Cerarti. Soc., 80, p. 253 (1997).
7. Edwards, D. D., Mason, T.O., Goutenoire, F., and Peoppelmeier, K.R., Appl. Phvs. Lett., 70, p. 1706 (1997).
8. Moriga, T., Edwards, D. D., Mason, T.O., Polmer, G.B., Poeppelmeier, K.R., Schindler, J.L., Kannewurf, C. R., and Nakabayashi, I., J. Am. Ceram. Soc., in press.
9. Han, B., Neumayer, D. A., Schulz, D. L., Hinds, B. J., Marks, T. J., Zhang, H., and Dravid, V. P., Chem. Mater., 6, p. 18 (1994).
10. Hinds, B. H., McNeely, R. J., Studebaker, D. B., Marks, T. J., Hogan, T. P., Schindler, J. L., Kannewurf, C. R., Zhang, X. F., and Miller, D. J., J. Mater. Res., 12, p. 1214 (1997).
11. Kimizuka, N., Isobe, M., and Nakamura, M., J. Solid State Chem., 116, p. 170 (1994).
12. Cannard, P. J. and Tilley, R. J. D., J. Solid State Chem., 73, p. 418 (1988).
13. Wang, R., King, L. L. H., and Sleight, A. W., J. Mater. Res., 11, p. 1659 (1997).
14. Minami, T., Kokumu, T., and Takata, S., J. Vac. Sci. Technol. A, 14, p. 1704 (1996).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed