Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T11:52:39.359Z Has data issue: false hasContentIssue false

Metallic Microwave Conductivity in Shock-Loaded Rutile*

Published online by Cambridge University Press:  21 February 2011

E. L. Venturini
Affiliation:
Sandia National LaboratoriesAlbuquerque, New Mexico 87185
R. A. Graham
Affiliation:
Sandia National LaboratoriesAlbuquerque, New Mexico 87185
Get access

Abstract

Electron spin resonance (ESR) has been used to characterize the paramagnetic defects present in both single crystal and powder rutile (TiO2) subjected to explosive shock loading and preserved for post-shock study. The Ti+3 defect concentration produced by the shock process is an order of magnitude larger than values reported for vacuumreduced rutile. The ESR lineshape is characteristic of a conducting material, and the estimated microwave resistivity in the shock-loaded powder is more than an order of magnitude lower than the minimum dc value measured in vacuum-reduced rutile. It appears that shock-wave loading leaves the rutile in a defect state not achieved in prior work.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work performed at Sandia National Laboratories supported by the U. S. Department of Energy under Contract No. DE-AC04-76DP00789.

References

REFERENCES

1. For a summary of observations, see Davison, L. and Graham, R. A., Phys. Repts. 55, 255379 (1979).Google Scholar
2. Graham, R. A., Morosin, B., Venturini, E. L., Beauchamp, E. K., and Hammetter, W. F., in Emergent Process Methods for High Technology Ceramics, 19th Univ. Conf. on Ceramic Science North Carolina State Univ., 8–10 November 1982 (in press).Google Scholar
3. Batsanov, S. S., Boreskov, G. K., Gridasova, G. V., Grier, N. P., Kefeli, L. M., Kudinov, V. M., Mali, V. I., and Sazonova, I. S., Kinetics and Catalysis 8, 11401146 (1967).Google Scholar
4. Boreskov, G., Sazonova, I., Keyer, N., Kudinov, V., Gridasova, G., Maly, V., and Kefely, L., in Behavior of Dense Media Under High Dynamic Pressures, ed. by Berger, J.,(Gordon and Breach, New York, 1968) 389396.Google Scholar
5. Golden, J., Williams, F., Morosin, B., Venturini, E. L., and Graham, R. A., Topical Conf. on Shock Waves in Condensed Matter Menlo Park, CA, 6/23–25/81,Google Scholar
5a(AIP Conf. Series #78 New York 1982) 72–76.Google Scholar
6. Morosin, B. and Graham, R. A., Third APS Topical Conference on Shock Waves in Condensed Matter Santa Fe, NM, 7/18–21/83, in press.Google Scholar
7. Carr, M., Graham, R. A., Morosin, B., and Venturini, E. L., this symposium.Google Scholar
8. Chester, P. F., J. Appl. Phys. 32, 22332236 (1961).Google Scholar
9. Kingsbury, P. I. Jr., Ohlsen, W. D., and Johnson, O. W., Phys. Rev. 175, 10911098 (1968).Google Scholar
10. Hasiguti, R. R., in Annual review of Material Science, Vol. 2, ed. by Huggins, R. A., Bube, R. H., and Roberts, R. W., (Annual Reviews, Palo Alto, 1972) 6992.Google Scholar
11. Shen, L. N., Johnson, O. W., Ohlsen, W. D., and DeFord, J. W., Phys. Rev. B10, 18231825 (1974).Google Scholar
12. Chandrashekhar, G. V. and Title, R. S., J. Electrochem. Soc. 123, 392395 (1976).Google Scholar
13. Serwicka, E., Schindler, R. N., and Schumacher, R., Bunsenges, Ber.. Phys. Chem. 85, 192195 (1981);Google Scholar
13a Serwicka, R., Schlierkamp, M. W., and Schindler, R. N., Z. Naturforsch. 36a, 226232 (1981).Google Scholar
14. Linde, R. K. and DeCarli, P. S., J. Chem. Phys. 50, 319325 (1969).Google Scholar
15. Symons, M. C. R., J. Chem. Soc. A,1648–1652 (1971).Google Scholar
16. Venturini, E. L., Morosin, B., and Graham, R. A., in Shock Waves in Condensed Matter-1981, (Menlo Park), edited by Nellis, W. J., Seaman, L. and Graham, R. A., American Institute of Physics, New York, 1982, 7781.Google Scholar
17. Davison, L., Webb, D. M., and Graham, R. A., in Nellis, et al. , eds., loc. cit. 67–71.Google Scholar
18. Graham, R. A. and Webb, D. M., Third APS Topical Conf. on Shock Waves in Condensed Matter Santa Fe, NM, 18–21 July, 1983, in press.Google Scholar
19. Holden, A. N., Kittel, C., Merritt, F. R., and Yager, W. A., Phys. Rev. 77, 147 (1950).Google Scholar
20. Chapman, A. C., Rhodes, R., and Seymour, E. F. W., Proc. Phys. Soc. (London) 345–360 (1957).Google Scholar
21. Hasiguti, R. R., Yagi, E., and Aono, M., Radiation Effects 4, 137140 (1970).Google Scholar