Skip to main content Accessibility help

Metallic glass fluid flow during welding using self-propagating reactive multilayer foils

  • Albert J. Swiston (a1), Timothy P. Weihs (a1), Omar M. Knio (a2) and Todd C. Hufnagel (a1)


We use a fluid mechanics model to analyze glass fluid flow during the welding of bulk metallic glasses with reactive multilayer foils acting as local heat sources. The resulting welded joints were shear tested, and fracture surfaces were analyzed by optical microscopy. Fracture surfaces of failed metallic glass joints show distinct regions of metal-metal veins that indicate effective metallurgical bonding. We observe a monotonic increase in the failure strength of the joints with the fraction of the joint composed of such veins. For the strongest joint tested (shear strength of 420 MPa), nearly 60% of the fracture surface is comprised of metal-metal veins. We have developed a qualitative fluid mechanics explanation of the welding process, in which shear stresses (due to pressure applied during joining) push the reactive foil from the joint interface and create the metal-metal veins. The welding process is more effective at higher joining pressure and greater foil thickness, leading to increased joint strength.



Hide All
1. Weihs, T.P., Self-Propagating Reactions in Multilayer Materials, in Handbook of Thin Film Process Technology. (IOP, Bristol, 1998).
2. Wang, J., Besnoin, E., Duckham, A., Spey, S.J., Reiss, M.E., Knio, O.M., Powers, M., Whitener, M., Weihs, T.P., Appl. Phys. Lett., 83 (19) 39873989 (2003).
3. Swiston, A. J. Jr, Hufnagel, T.C., and Weihs, T.P.. Scripta Mater. 48 (12) 15751580 (2003).
4. Masuhr, A., Waniuk, T.A., Busch, R., and Johnson, W.L.. Phys. Rev. Lett., 82 (11) 22902293 (1999).
5. Lu, J., Ravichandran, G., and Johnson, W.L.. Acta Mater., 51 (12) 34293443 (2003).
6. Bakke, E., Busch, R., and Johnson, W.L.. Mater. Sci. Forum, 225 95100 (1996).
7. Berlev, A., Bobrov, O.P., Csach, K., Kaverin, V.L., Khonik, V.A., Kitagawa, K., Miskuf, J., and Yurikova, A.. J. Appl. Phys., 92 (10) 58985903 (2002).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed