Skip to main content Accessibility help

A Mercury Selective Electrode

  • Jon Scaggs (a1), Dale D. Russell (a1), S. P. Duttagupta (a2) and Michael W. Hill (a1)


A novel mercury ion selective electrode has been constructed to have strongly coordinating macrocyclic ligand binding site covalently attached to polythiophene film using 1-1,4,10-trioxa-7,13-diazacyclopentadecane-1-thiophenylmethane (TDCD-thiophenylmethane) as a specific chelator. In amperometric mode, the current is proportional to mercury (II) concentrations down to 2 ppb. Reversible cyclic voltammetric waves show that both mercury (I) and mercury (II) are stabilized by the ligand. Monomethyl mercury and vapor phase elemental mercury are also electrochemically determined. Dissolved oxygen and heavy metal cations show no significant interference even at ten times the mercury concentration. The polymer surface shows robust performance for two years or longer. Fabrication strategies are being developed to optimize the probe performance. The variables under investigation include substrate surface roughness, the ratio of derivitized thiophene (TDCD-thiophenylmethane) to underivatized thiophene in the surface polymer, ratio of thiophene with two chelating rings to thiophene with only one, number and thickness of electrodeposited polymer layers, composition of polymer layers, and number of -CH2- units separating the chelating ring from the thiophene monomer units. The probe exhibits linear response to mercury concentration, and detects mercury in several forms.



Hide All
1. Wang, J., Olsen, K., Larson, D., US Patent No. 5,676,820, Oct. 14 1997.
2. Cappon, C. J., Mercury and organomercurials, Analysis of contaminants in edible aquatic plants, 1995.
3. Zhang, H., Lindberg, S. E., Envir. Sci. Technol. 35, 928935 (2001).
4. Nixon, D. E., Mussmann, G. V., Moyer, T. P., J. of Environ Toxicol 20, Jan/Feb, (1996).
5. Jui-bin, J., Zhe-ming, N., Shun-rong, W., Heng-Bin, H., Fresenius Z Anal Chem 334, 2730 (1989).
6. Donais, M.K., Uden, P.C., Schantz, M.M., Weis, S.A., Anal. Chem. 68, 38593866 (1996).
7. Clevenger, W.L., Smith, B.W., Winefordner, J.D., Critical Reviews in Analytical Chemistry 27(1), 126, (1997).
8. Wang, J., Tian, B., Lu, J., Wang, J., Luo, D., MacDonald, D., Electroanalysis 10(6), 399401, (1998).
9. Mandler, D., Turyan, I., US Patent No. 5,385,708, Jan. 31, 1995.
10. Stratton, W.J., Lindberg, S.E., Perry, C.J., Envir. Sci. Tehnol. 35, 170177 (2001).
11. Epstein, A.J., MRS Bulletin, June 16-23 (1997).
12. MacDiarmid, A.G., Zheng, W., MRS Bulletin June, 24-30, (1997).
13. Eevers, W., Schrivjer, D. de, Dierick, T., Peten, C., Looy, J. van der, Geise, H. J., Synth. Met. 51, 329334, (1992).
14. Nagatomo, T., Omoto, O., J. Electrochem. Soc. And Technol. Sep., 21242128 (1988).
15. Swager, T.M., Marsella, M.J., US Patent No. 5,519,147, May 21, (1996).
16. Shiga, T., Okada, A., Advanced Materials 10(7), (1998).
17. Izatt, R.M., Bradshaw, J.S., Nielsen, S.A., Lamb, J.D., Christensen, J.J., Chem. Rev. 85, 271339 (1985).

A Mercury Selective Electrode

  • Jon Scaggs (a1), Dale D. Russell (a1), S. P. Duttagupta (a2) and Michael W. Hill (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed