Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T19:23:23.302Z Has data issue: false hasContentIssue false

Medium-Range Order and Crystallization in Zr59Cu20Al10Ni8Ti3 and Zr57Cu20Al10Ni8Ti5 Metallic Glasses Investigated by NMR

Published online by Cambridge University Press:  01 February 2011

Hergen Breitzke
Affiliation:
Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
Klaus Lüders
Affiliation:
Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
Sergio Scudino
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Germany
Jürgen Eckert
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Germany
Uta Kühn
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Germany
Get access

Abstract

Medium-range order and quasicrystal formation in Zr57Cu20Al10Ni8Ti5 and Zr59Cu20Al10Ni8Ti3 metallic glasses are investigated by means of nuclear magnetic resonance (NMR). The samples are prepared by rapid solidification and annealed to induce primary quasicrystal formation. 27Al and 63Cu NMR spectra and spin relaxation curves are recorded before and after the annealing process. The spectral width of 27Al and 63Cu NMR spectra is relatively small and can be taken as a proof for the presence of medium-range order in these metallic glasses. By simulations of 27Al and 63Cu NMR second moments in various binary Al and Cu compounds the medium-range orders L12 AlZr3 and C11b CuZr2 can be identified in both as-quenched metallic glasses. After heat treatment both metallic glasses show considerable changes in the 63Cu NMR second moments, whereas the 27Al NMR second moments show only relatively small changes. Furthermore, the 63Cu NMR second moment after heat treatment in Zr57Cu20Al10Ni8Ti5 is about half as large as in Zr59Cu20Al10Ni8Ti3 indicating different types of crystallization during heat treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Xing, L. Q., Hufnagel, T. C., Eckert, J., Löser, W., and Schultz, L., Appl. Phys. Lett. 77, 1970 (2000).Google Scholar
[2] Xing, L. Q., Eckert, J., Löser, W., and Schultz, L., Appl. Phys. Lett. 73, 2110 (1998).Google Scholar
[3] Xing, L. Q., Shen, Y. T., and Kelton, K. F., Appl. Phys. Lett. 81, 3371 (2002).Google Scholar
[4] Eifert, H.-J., Elschner, B., and Buschow, K. H. J., Phys. Rev. B 25, 7441 (1982).Google Scholar
[5] Shastri, A., Borsa, F., Torgeson, D. R., Shield, J. E., and Goldman, A. I., Phys. Rev. B 50, 15651 (1994).Google Scholar
[6] Apih, T., Klanjšek, M., Rau, D., and Dolinšek, J., Phys. Rev. B 61, 11213 (1999).Google Scholar
[7] Tang, X.-P., Busch, R., Johnson, W. L., and Wu, Y., Phys. Rev. Lett. 81, 5358 (1998).Google Scholar
[8] Warren, W. W. Jr, Chen, H. S., and Hauser, J. J., Phys. Rev. B 32, 7614 (1985).Google Scholar
[9] Abragam, A., The Principles of Nuclear Magnetism (Oxford University Press, 1973).Google Scholar
[10] Slichter, C. P., Principles of Magnetic Resonance (1990), 3rd ed.Google Scholar