Skip to main content Accessibility help
×
Home

Mechanisms overview of Thermocompression Process for Copper Metal Bonding

  • Paul Gondcharton (a1), Floriane Baudin (a1), Lamine Benaissa (a1) and Bruno Imbert (a1)

Abstract

Wafer level metal bonding involving copper material is widely used to achieve 3D functional integration of ICs and ensure effective packaging sealing for various applications. In this paper we focus on thermocompression bonding technology where temperature and pressure are used in parallel to assist the bonding process. More specifically a broad range of conditions was explored and interesting results were observed and are reported. Indeed, despite a relatively high roughness, the presence of a native oxide and the lack of surface preparation, there still exists a process window where wafer level bonding is allowed. In these conditions, limiting the bonding mechanisms to basic copper diffusion is no longer satisfactory. In this study, a specific scenario inspired by both wafer bonding and metal welding state of the art is put forward. Accordingly, pure copper diffusion through the bonding interface is lined with plastic deformation and metallic oxide fracture. In addition, polycrystalline film deformation due to thermomechanical stress is highlighted and grain growth and voiding formation are observed and confirmed.

Copyright

References

Hide All
1. Wolffenbuttel, R. F. and Wise, K. D., Sensors and Actuators A: Physical 43, 13 (1994).
2. Sillon, N., Astier, A., Boutry, H., and al., in IEDM 2008 (2008).
3. Fan, J., Lim, D. F., Peng, L., and al., Electrochem. Solid-State Lett., 14, 11 (2011).
4. Rieutord, F., Moriceau, H., Beneyton, R., and al., ECS Trans., 3, 6, (2006).
5. Radu, I., Landru, D., Gaudin, G., and al., in 3D Systems Integration Conference (3DIC)(2010)
6. Gueguen, P., Cioccio, L. D., Gergaud, P., and al., J. Electrochem. Soc., 156, 10 (2009).
7. Baudin, F., Cioccio, L. D., Delaye, V., and al., Microsyst Technol, (2012).
8. Dargent, L., Bogumilowicz, Y., Renault, O., and al., J. Electroch. Soc., 158, 3 (2011).
9. Aspar, B., Jalaguier, E., Mas, A., and al., Electronics Letters, 35, 12 (1999).
10. Di Cioccio, L., Gueguen, P., Grouiller, E., and al., in ECTC (2010)
11. Kerdiles, S., Letertre, F., Morales, C., and al., U.S. Patent No.72 327 391 (9 juin 2007).
12. Tsau, C. H., Spearing, S. M., and Schmidt, M. A., J. Microelectromech. Sys., 13, 6 (2004).
13. Shimatsu, T., Mollema, R. H., Monsma, D., and al., J. Vac. Sc. & Tech. A: 16, 4 (1998).
14. Straessle, R., Pétremand, Y., Briand, D., and al., Proc. Eng., 25 (2011).
15. Leong, H. L., PhD Thesis, 2008.
16. Tadepalli, R., PhD Thesis, 2007.
17. Made, R. I., Gan, C. L., Yan, L., and al., Acta Materialia, 60, 2 (2012).
18. Chen, K. N., Tan, C. S., Fan, A., et Reif, R., Electrochem. Solid-State Lett., 7, 1 (2004).
19. Ang, X. F., Liu, H. P., Tan, Y. L., and al., in EPTC (2010)
20. Kim, J.-W., Jeong, M.-H., et Park, Y.-B., Microelectronic Engineering, 89 (2012).
21. Jang, E.-J., Hyun, S., Lee, H.-J., and al., Journal of Elec. Mater., 38, 12 (2009).
22. Tan, C. S., Chen, K. N., Fan, A., and al., Journal of Elec. Mater., 34, 12 (2005).
23. Kim, J.-W., Kim, K.-S., Lee, H.-J., and al., IPFA (2011)
24 Suga, T., Yuuki, F., and Hosoda, N., in IEMT/IMC Symposium (1997).
25. Peng, L., Li, H., Lim, D. F., and al., IEEE Transactions on Electron Devices, 58, 8 (2011).
26. Mohamed, H. A. and Washburn, J., Weld., J. (Miami) (1975).
27. Bay, N., American Welding Society, 62 (1983).
28. Holloway, K., Fryer, P. M., Cabral, C., and al., Journal of Applied Physics, 71, 11 (1992).
29. Kang, S. H., Obeng, Y. S., Decker, M. A., and al., 30, 12, (2001).
30. Tan, C. S., Reif, R., Theodore, N. D., and al., Applied Physics Letters, 87, 20 (2005).
31. Chen, K. N., Fan, A., Tan, C. S., and al., Journal of Elec Materi, 32, 12 (2003).
32. Chen, K. N., Fan, A., and al., Journal of Materials Science, 37, 16 (2002).
33. Jang, E.-J., Kim, J.-W., Kim, B., and al., Met. Mater. Int., 17, 1 (2011).
34. Chang, Y. A. and Himmel, L., Journal of Applied Physics, 37, 9 (1966).
35. Roy, R., Agrawal, D. K., and McKinstry, H. A., Ann. Rev. Mater. Sci., 19, 1 (1989).
36. Humphreys, F. J. and Hatherly, M., Recrystallization and Related Annealing Phenomena. (Elsevier, 2004).
37. Cocke, D. L., Schennach, R., Hossain, M. A., and al., Vacuum, 79, 12 (2005).

Keywords

Mechanisms overview of Thermocompression Process for Copper Metal Bonding

  • Paul Gondcharton (a1), Floriane Baudin (a1), Lamine Benaissa (a1) and Bruno Imbert (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed