Skip to main content Accessibility help
×
Home

Mechanisms of Single-Wall Carbon Nanotube Growth by the Laser Vaporization Technique: In Situ Imaging and Spectroscopy

  • D. B. Geohegan (a1), A. A. Puretzky (a2), X. Fan (a1), M. A. Guillorn (a1), M. L. Simpson (a1), V. I. Merkulov (a1) and S. J. Pennycook (a1)...

Abstract

Single-wall carbon nanotubes are formed by Nd:YAG laser vaporization of a graphite/(1 at. % Ni, 1 at. % Co) target into flowing argon (500 Torr) within a quartz tube furnace (1000 °C). Here, this process is investigated for the first time with time-resolved laser-induced luminescence imaging and spectroscopy of Co atoms, C2 and C3 molecules, and clusters. These measurements under actual synthesis conditions show that the plume of vaporized material is segregated and confined within a vortex ring which maintains a ˜1 cm3 volume for several seconds. Using time-resolved spectroscopy and spectroscopic imaging, the time for conversion of atomic and molecular species to clusters was measured for both carbon (200 μs) and cobalt (2 ms). This rapid conversion of carbon to nanoparticles, combined with transmission electron microscopy analysis of the collected deposits, indicate that nanotube growth occurs during several seconds of time from a feedstock of mixed nanoparticles in the gas-suspended plume. Using these in situ diagnostics to adjust the time spent by the plume within the high-temperature zone, single-walled nanotubes of controlled length were grown at an estimated rate of 0.2 μm/s.

Copyright

References

Hide All
1. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fisher, J. E., Smalley, R. E., Science 273, 483 (1996).
2. Yudasaka, M., Ichihashi, T., Komatsu, T., Iijima, S., Chem. Phys. Lett. 299, 91 (1999).
3. Rinzler, A. G., Liu, J., Dai, H., Nikolaev, P., Huffman, C. B., Rodriguez-Macias, F. J., Boul, P. J., Lu, A. H., Heymann, D., Colbert, D. T., Lee, R. S., Fisher, J. E., Rao, A. M., Eklund, P. C., Smalley, R. E., Appl. Phys. A 67, 29 (1998).
4. JT, Hu, TW, Odom, CM, Lieber, Accounts of Chemical Research 32, 435445 (1999).
5. Dillon, A. C., Parilla, P. A., Jones, K. M., Riker, G., Heben, M. J., Mater. Res. Symp. Proc. (to be published).
6. Kokai, F., Takahashi, K., Yudasaka, M., Yamada, R., Ichihashi, T., and Iijima, S., J. Phys. Chem. B 103, 4346 (1999).
7. Yakobson, B.I. and Smalley, R.E., American Scientist 85, 324 (1997).
8. Iijima, S., Ichihashi, T., Nature 363, 603 (1993).
9. Bethune, D.S., Kiang, C.H., Vries, M.S. de, Gorman, G., Savoy, R., Vazquez, J., Beyers, R., Nature 363, 605 (1993).
10. Avouris, Ph., Hertel, T., Martel, R., Schmidt, T., Shea, H.R., and Walkup, R.E., Appl. Surf. Sci. 141, 201 (1999).
11. Baughman, R.H., Cui, C., Zakhidov, A.A., lqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G., Mazzoldi, A., Rossi, D. De, Rinzler, A. G., Jaschinski, O., Roth, S., and Kertesz, M., Science 284, 1340 (1999).
12. Poncharal, P., Wang, Z. L., Ugarte, D., and Heer, W. A. de, Science 283, 1513 (1999).
13. Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., and Lieber, C.M., Nature 394, 52 (1998).
14. Schmid, H. and Fink, H.–W., Appl. Phys. Lett. 70, 2679 (1997).
15. Li, J., Papadopoulos, C., Xu, J. M., and Moskovits, M., Appl. Phys. Lett. 75, 367 (1999).
16. Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez–Macias, F., Shon, Y.–S., Lee, T. R., Colbert, D. T., and Smalley, R. E., Science 280, 1253 (1998).
17. Ye, Y., Ahn, C. C., Witham, C., Fultz, B., Lku, J., Rinzler, A. G., Colbert, D., Smith, K. A., and Smalley, R. E., Appl. Phys. Lett. 74, 2307 (1999).
18. Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., Smalley, R. E., Chem. Phys. Lett. 236, 419 (1995).
19. Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Chapelle, M. Lamy de la, Lefrant, S., Deniard, P., Lee, R., Fisher, J.E., Nature 388, 756 (1997).
20. Cheng, H. M., Li, F., Su, G., Pan, H. Y., He, L. L., Sun, X., Dresselhaus, M. S., Appl. Phys. Lett. 72, 3282 (1998).
21. Satiskumar, B. C., Govindaraj, A., Sen, R., Rao, C.N.R., Chem. Phys. Lett. 293, 47 (1998).
22. Arepalli, S., Scott, C.D., Chem. Phys. Lett. 302, 139 (1999).
23. Geohegan, D.B., Puretzky, A.A., Duscher, G. and Pennycook, S.J., Appl. Phys. Lett. 72, 2987 (1998).
24. Geohegan, D.B., Puretzky, A.A., Duscher, G. and Pennycook, S.J., Appl. Phys. Lett. 73, 438 (1998).
25. Geohegan, D.B., Puretzky, A.A., Rader, D.J., Appl. Phys. Lett. 74, 3788 (1999).
26. Puretzky, A. A., Geohegan, D. B., Fan, X., and Pennycook, S. J., Appl. Phys. Lett. 76, 182 (2000).
27. Puretzky, A. A., Geohegan, D. B., Fan, X., and Pennycook, S. J., special issue of Appl. Phys.A.to be published Jan./Feb. 2000.
28. Geohegan, David B., Puretzky, A. A., Hettich, R. L., Zheng, X.-Y., Haufler, R. E., and Compton, R. N., in Advanced Materials '93, IV/ Laser and Ion Beam Modification of Materials, edited by Yamada, I., et al., Trans. Mat. Res. Soc. Jpn., 17, 349 (1994).
29. Images also available online at www.ornl.gov/˜odg.
30. Bulgakov, A. V. and Bulgakova, N. M., J. Phys. D: Appl. Phys. 31, 693 (1998).
31. Garrelie, F., Champeaux, C., Catherinot, A., Appl. Phys. A 69, 45 (1999).
32. Geohegan, D. B., Puretzky, A. A., Appl. Phys. Lett. 67, 197 (1995).
33. Krajnovich, D., J. Chem. Phys 102, 726 (1995).
34. Rohlfing, E. A., J. Chem. Phys 91, 4531 (1989).
35. Geohegan, D. B., Puretzky, A. A., Mater. Res. Symp. Proc. 397, 55 (1996).
36. Rohlfing, E. A., J. Chem. Phys. 89, 6103 (1988).
37. Geohegan, D. B., Appl. Phys. Lett. 62, 1463 (1993).
38. Yudasaka, M., Yamada, R., Sensui, N., Wilkins, T., Ichihashi, T., and Iijima, S., J.Phys. Chem. B 103, 6224 (1999).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed